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1.1 A Brief history of complex numbers 

This section is taken from Stuart Dagger at Oxford University: “You met numbers so early in 

your school career that you will have long since ceased to regard them as anything other than 

a natural phenomenon, things which are just there and which mathematics uses. This shows 

how effective early indoctrination can be, for the truth is very different. The positive integers, 

the numbers that you count with, are natural; the rest are things that mathematicians have 

invented as an aid to solving problems. As a result, the notion of “number” is one that has 

changed down the centuries.  

 

Were you to go back to the sixteenth century and the early years of this university, and were 

you to ask the then professor of mathematics to solve the equation �� + � = 6, you would be 

told that the answer was x = 2. Solve the equation yourself and you would get two solutions: � = 2 and � = −3. The difference is not one of skill or care but of point of view. To the European 

mathematician of the sixteenth century numbers were things that you counted with and 

measured with. Negative apples, negative lengths, negative areas didn't exist, and neither, 

therefore, did negative numbers. The more adventurous were prepared to manipulate negative 

quantities when doing addition and subtraction, but they weren't prepared to accept negative 

answers. There is nothing illogical in this; it is just a point of view. Run the clock back further 

and you will reach a time when there was no such number as zero, and once again this is not 

illogical; it was just that the need for such a number had not been felt, and so no one had thought 

to invent it. Notions change as people realise that the old ones are not adequate for their needs. 

 

By the seventeenth century the convenience of being able to manipulate negative quantities 

was producing such a change of notion. The idea of the real line came in, with positive numbers 

to the right of zero and negative ones to the left. Interpretations of numbers in terms of credit 

and debt also helped, but the status of negative numbers was still not on a par with positive 

ones. And even in the eighteenth century many writers still rejected the idea that you could 

multiply two negative numbers together. (Positive times negative makes sense in terms of 

directed distances on the real line, but the “fact” that negative times negative was positive 

seemed to many to be too paradoxical to be acceptable.) Nowadays nobody worries. Everyone 

agrees that mathematics is easier and more convenient with negative numbers than without, 

and so they are accepted. Ways have been devised to give them a sound, logical basis, […]. 
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The reason for telling you all this is that we are now going to make a further extension of what 

we mean by “number”, and again our reason for doing this is that over a period of time 

mathematicians came to realise that problem solving was easier with the new numbers than 

without. 

 
It is again convenient to begin by presenting our sixteenth century mathematician with an 

equation, and this time we shall present him with two: 

(1)      �� + 5 = 2� 

(2)      �
 = 15� + 4 

The first is a quadratic, and the method for solving these has been known since the time of the 

Babylonians, around 2000 B.C. Applied to this equation it gives you � = 1 ± , at which point our 

mathematician would have declared that the equation had no solution. You would probably 

have been told the same thing at school, and, as with the denial of negative numbers, it is an 

entirely logical view to take. Nor, this time, is there any obvious reason why it might be more 

convenient to take a different one. 

 
The second equation he'd have found more interesting. The first important mathematical 

discovery of the European Renaissance was the method for solving cubic equations. It is messy, 

which is why you don't learn it and why it had not been found earlier, but it exists. Applied to 

this equation it produces the answer 

 � = �2 + √−121� + �2 − √−121�
 (*) 

This looks like nonsense, and so the natural conclusion is that this is another equation with no 

solution. However, inspection shows that the equation has the solution x = 4. So somehow the 

right-hand side of (*) must “equal 4”. 

 

Motivated by this people began doodling with square roots of negative numbers to see what 

would happen if they were to exist. They didn't claim that what they were doing was  

meaningful, just that it was strange and curious and did seem to give correct answers. 

 

Initially the observation was a nine days wonder, rejected as being just too fanciful, but it was 

taken up again by Leibniz in the late 17th century, and from then through to about 1800 it 

became increasingly important as a means of discovering results, results which could then be 

verified by more orthodox means. [...] So it was with “imaginary numbers” in the 18th century. 
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Here is what Euler, the greatest mathematician of the 18th century, had to say in his book 

Elements of Algebra. 

 
Since all numbers which it is possible to conceive are either greater or less 

than 0, or are 0 itself, it is evident that we cannot rank the square root of a 

negative number amongst possible numbers, and we must therefore say that 

it is an impossible quantity. In this manner we are led to the idea of numbers 

which from their nature are impossible; and therefore they are usually called 

“imaginary quantities”, because they exist merely in the imagination.  

 

All such expressions as √−1, √−2, √−3, √−4, etc are consequently impossible, 

or imaginary numbers, since they represent roots of negative quantities; and 

of such numbers we may truly assert that they are neither nothing, nor greater 

than nothing, nor less than nothing; which necessarily constitutes them 

imaginary, or impossible. 

 

But notwithstanding this, these numbers present themselves to the mind; they 

exist in our imagination, and we still have a sufficient idea of them; since we 

know that by √−4 is meant a number which, when multiplied by itself, 

produces −4; for this reason also, nothing prevents us making use of these 

imaginary numbers, and employing them in calculation. 

 

Having thus asserted the virtues of both practicality and the imagination, Euler went on to 

explain how to use these imaginary quantities and to show what could be achieved with them. 

By the early nineteenth century the argument was over: the usefulness of complex numbers 

was not in dispute, and a means had been found of constructing a sound, logical basis for them. 

They then took their place as bona fide numbers, much as zero, and negative numbers had 

earlier.” 
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Below is a table summarising problems and ideas of certain classes of numbers: 

 Negative  
numbers 

Real 
numbers 

Complex  
numbers 

Invented to 

answer things 

like … 

What is 3 – 4? 
What is the answer to  �� − 2 = 0 What is √−1  

Originally  

not accepted 

because … 

How can you take 
away more than 
what you have? 

Numbers considered to 
be expressible in finite 

terms. 
 

√2 cannot be a number 
since its decimal version 

carries on forever 

How can you take 
the square root of a 
negative number? 

Intuitive 

meaning 

“Opposite” 

“Mirror” 

“Reflect along the 
number line” 

√2: The hypotenuse of  
a triangle with unit sides 

 
π : the ratio of 

circumference of a circle 
to its diameter 

“Rotation”  

(Adapted from https://betterexplained.com/articles/a-visual-intuitive-guide-to-imaginary-

numbers/)  

 

1.2 On quadratic equations having ∆∆∆∆ < 0: Defining imaginary and complex numbers 

Here we move directly onto defining what a complex number is, along with the most basic 

situation in which complex numbers arise. 

 
1.2.1 Solving quadratics with ∆ < 0 – Part 1 

All the algebra we have done in the past has been based on solving equations with real roots.  

In other words ��� + �� + � = 0 was solved under the assumption that �� − 4�� ≥ 0. Thus we 

have been able to solve quadratics such as �� − 2� + 1 = 0 to give � = 1, 1, or �� − 4� + 3 = 0 

to give � = 1, 3. However, if we try to solve 

�� − � + 1 = 0 

we obtain  

� = 1 ± √1 − 42 = 12 ± √−32  

 
  



5 

 

This result cannot be reduced to real numbers, since b2 < 4ac. Therefore no solution to x exists 

in ℝ for this last quadratic. So we see that the solution of a quadratic is dependent on the 

discriminant Δ = �� − 4�� which adopts one of three possibilities shown below: 

 

The results from the three quadratic equations above can be illustrated graphically as shown 

below. 

 

 

 �� − 4� + 3 = 0  �� − 2� + 1 = 0   �� − � + 1 = 0  

 

1.2.2 Defining the imaginary number 

We now come to a critical point. If you have seen, read, or been taught the basics of solving 

quadratics when ∆ < 0 you will have seen the new number i introduced. In introducing this new 

number you may have been told that it is defined as � = √−1. For pratical purpose such a 

definition is ok, but it can cause confusion as we shall now see (formally speaking (and in terms 

of modern maths) this is not the correct definition of the imaginary number). 

 
We know that we can take square roots of positive numbers in the following way:  

√4 × 4 = √16 = ±4 

and √4 × 4 = √4 × √4 = �±2� × �±2� = ±4. 

In other words, the square root of a product equals the product of the separate square roots. 

What we are doing here is to distribute the square root across the multiplication, i.e. we are 

doing √�� = √� √�.  
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Will this also be the case when taking roots of complex numbers? Given that we are creating a 

new number how do we know that it will follow the same rules of arithmetic we use on real 

numbers? We don’t. And, as with all new mathematical objects, we have to go back to the very 

beginning to define how they work.  

 
So, by not properly understanding the process of rooting complex numbers we can easily fall 

into the following trap: 

 1 = √1 = ��−1��−1� = √−1 √−1 = �√−1 � = −1 . (*) 

So we have “proved” that 1 = −1. To understand what has gone wrong in our proof let us look 

at the case of √1. The answer to this is  

√1 = ±1 . 
We know this to be true because we can test both answers, namely 

• Squaring the left hand side gives �√1 � = 1  

and 

• Squaring the right hand side gives 

o �+1�� = 1  

and 

o �−1�� = 1 

 
Hence √1 does indeed equal ±1. So writing 1 = √1 in (*) above is actually an ambiguous 

statement, and might even be said to be incorrect, since we have not specified which of the two 

values of √1 we are referring to. The precise way of stating this equation would be as 

1 = √1 provided √1 = +1. 
(a)  (b) 

 
This may seem like a circular statement but it is not since the “+1” on the RHS of (b) refers to 

one of the solutions to √1, and the “1” on the LHS of (a) is a number we are claiming is equal to 

√1 (and which is separate to that of the RHS of (b)). 

 
So, if we are interested in showing that 1 = 1 by using √1 we have to choose that answer to the 

root which makes our maths consistent. In other words we choose √1 = +1 in order to be able 

to say 1 = √1. Similarly, we choose √1 = −1 in order to say −1 = √1.  
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Note that the solutions √1 = ±1 can be seen to be the result of solving the problem � = √1. 

However, we can restate this problem as that of wanting to solve �� = 1. It might look as if we 

are going round in circles, but we are not. The difference between these two equations lies in 

whether they produce two answers to our problem or only one answer. Although in both cases 

there are two values of � which satify the equality, the result of solving � = √1 is to produce 

two answers: � = +1 and � = −1, whereas the result of solving �� = 1 is to produce only one 

answer, i.e. the value 1. Conceptually speaking it is the difference between rooting of a number, 

which produces two different answers, and squaring two different numbers which produces 

one (and the same) answer. 

 
So, we want square roots not as answers to solving the square root problem but as answers 

which satisfy the squaring problem, i.e.  

√1 = ±1 only because �√1 � = �±1��, i.e. 1 = 1. 

(if you understand the definition of a function, what we are doing here is to recast the square 

root problem, which is not a function, as an inverse problem (i.e. as an integer power problem) 

which is a function).  

 
Hence, defining � to be the solutions such that �� = 1 instead of � = √1 means we no longer 

need to worry about considering two answers, or which of the two answers to choose. We no 

longer consider √1 = 1 and/or √1 = −1. Instead we consider �±1�� = 1, i.e. an equation for 

which it is clear that there is only one answer, namely the value 1 

 
We can now consider the imaginary number � in exactly the same way. The truth is that √−1 =±�. Why? Because if � = √−1 then �� = −1, and if if −� = √−1 then �−��� = −1. So, when we 

write  

1 = ��−1��−1� = √−1 × √−1 = �. � = �� = −1 

 
we are effectively choosing only one of the roots of √−1, i.e. √−1 = �, and in doing so we have 

created a contradiction. But we can also chose √−1 = −�. In that case we have 

1 = ��−1��−1� = √−1 × √−1 = −�. � = −�� = 1 

which is indeed true. So in order to get the correct answer we have to do is to choose the 

combination of roots which makes our mathematics consistent. In order that 1 = ��−1��−1� 

be true we choose the combination ��−�� and we have 1 = ��−�� = −�� = 1.  
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So, if we are interested in showing that 1 = 1 via the use of ��−1��−1� we have to choose that 

answer to the root which makes our maths consistent. In other words we choose √−1 = � as 

one root and √−1 = −� as the other root. 

 

1 = ��−1��−1� =
⎩⎪⎪
⎨
⎪⎪⎧

�. � = �� = −1 ����

−�. � = −�� = 1 ����

��−�� = −�� = 1 ����

�−���−�� = �� = −1 ����

 

 

Four possible ways of combining the roots � and −�, 

only two of which give the correct result 

 

The moral of the story is that to save us from the problems of having two answers, and of having 

to decide which answer to choose, we don’t define the imaginary number as � = √−1 (which is, 

in fact, just one of two answers to √−1). Rather we define the imaginary number i to be a 

number such that �� = −1, since it is clear that there is only one answer to ��. We do this 

because ��−1��−1� does not define an answer uniquely equal to 1, whereas the product �−1��−1� does indeed defines a unique answer 1. Squaring defines unique answers; square 

rooting does not.  

 
Anyway, it comes to pass that the imaginary number is not defined as � = √−1, since this would 

define � to only be the positive square root of −1. Instead, a better way to  define it is to say that 

it is that number which when squared equals −1, i.e. 

 �� = −1 . (1) 

 
Technically speaking, even this is not the actual definition of the imaginary number. The 

formally accepted defintion of complex numbers refers to something called an ordered pair of 

numbers which satisfies certain properties of addition and multiplication. But since this takes 

us way outside the scope of these notes we will take (1) as our working definition.  

 
On a more psychological note, the fact that i is called the imaginary number is unfortunate since 

in the world of modern maths i is seen as being as “real” as any other type of number. It may 

seem to you that i is not really a number at all. This attitude is only because we are so used to 

things such as 1, −2, 3.5 and π as being the “real” numbers, the numbers which really exists.  
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So when we meet something totally strange like √−1 we can’t accept it as a number at all. This 

is exactly the same issue the mathematicians of centuries past faced. But if you continue in your 

mathematical career you will learn that mathematicians construct many new mathematical 

objects, one type of which are numbers, and do so for the purpose of being able to solve 

problems which cannot be solved without them. So from now on we will say that the number i 

is as “real” a number as 1, −2, 3.5 and π, or more precisely that there is does exists a number 

which, when squared, gives −1. This we can do because i) such a number has been constructed 

to work as a number according to rules of arithmetic which we will develop later, and ii) it has 

been possible to construct a whole coherent and consistent framework of mathematics based 

on the number i, and iii) it help solves problems which can’t be solved without it. 

 
1.2.3 Solving quadratics with ∆ < 0 – Part 2 

We can now return to our quadratic �� − � + 1 = 0 

of section 1.2.1 whose roots we found to be  
 

� = 1 ± √1 − 42 = 12 ± √−32  . 
The two roots can be expressed as 

 � = 12 ± � √32  (2) 

 
Equation (2) is then the solution to �� + � + 1 = 0, and represents two complex numbers.  

 
In introducing this new number i we have effectively expanded the set of available numbers we 

can work with, from the set of real number ℝ to a new set called the set of complex number, 

denoted by ℂ. The set ℂ is now a set which contains all the other sets of numbers, i.e. 

ℕ ⊂ ℤ ⊂ ℚ ⊂ ℝ ⊂ ℂ. 

 
We can now solve any and all polynomials, and they can now all be factorised. For the quadratic 

above we can now say that 

�� + � + 1 = +� − ,− 12 + � √32 -. +� − ,− 12 − � √32 -. 
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Another example: if �� + 25 = 0 then �� = −25 which leads to � = ±5�. Hence we have �� − 5���� + 5�� = 0. Or if 2�� + � + 1 = 0 then by the quadratic formula we have  

� = −1 ± √1 − 4 × 2 × 14 = − 14 ± √74 � , 
which can be factorised in the usual way (left as an exercise). We can even solve quadratic 

whose coefficients are complex numbers (see later).  

 
1.2.4 Defining a complex number 

We are now in a position to state the general definition of a complex number as 

0 = � + �� 

where �, � ∈ ℝ. Note that both a and b are real numbers, but that a is called the real part (Re) 

of the complex number z, and b is called the imaginary part (Im) of the complex number z (note 

that this definition is an informal one. There is actually a much more formal definition, involving 

something called ordered pairs, which is beyond the scope of these notes).  

 
Examples of complex numbers, along with their Re and Im parts, are shown in the table below. 

2 = 3 + 45 2 + 3� −1 − �6 10� 3 0 

78�2� 2 −1 0 3 0 

9:�2� 3 −6 10 0 0 

 

In terms of a quadratic polynomial ; = <��� having complex roots, note that complex numbers 

always come in pairs. This is because the quadratic formula contains a ± sign. Hence given one 

complex root  you automatically know the other complex  root: if �= = � + �� is one root of a 

quadratic then we know that �� = � − �� is automatically the other root. 

 
So, given that complex roots always occur in pairs (but only for polynomials having real 

coefficients), we can classify the type of roots of a polynomial as follows: 

 

Polynomial  Type of roots 

Quadratic  Two real root or two complex roots. 

Cubic  Three real roots, or one real root and two complex roots. 
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Polynomial  Type of roots 

Quartic  Four real roots, or two real root and two complex roots. 

Quintic 
Five real roots, three real roots and two complex roots,  

or one real root and four complex roots. 

 
etc.  

 
Example 1: If we know that a quadratic equation has a root of 2� then we also know that its 

other root is −2�. From this we can actually find the quadratic itself since we now the factors of 

the quadratic to be � − 2� and � + 2�. Therefore  

�� − 2���� + 2�� = �� − �>�2�� + �−2��? + 4 , 

 = �� + 4 . 
 
Example 2: Similarly, for a quadratic having roots 2 − � and 2 + � we can find the quadratic 

which has these roots as follows: 

�� − �2 + �� �� − �2 − ��  = �� − �>�2 + �� + �2 − ��? + �2 + ���2 − �� , 

 = �� − 4� + 5 . 
 

Example 3: For a cubic having roots 1, 4 − 3� and 4 + 3� the cubic can be factorised as  

�� − 1��� − �4 + 3�� �� − �4 − 3�� = 0 . 
 
For the quadratic part we have  

�� − �4 + 3�� �� − �4 − 3��  = �� − �>�4 + 3�� + �4 − 3��? + �4 + 3���4 − 3�� , 

 = �� − 8� + 25 . 
 

Hence the actual cubic is �� − 1���� − 8� + 25� = �
 − 9�� + 33� − 25 = 0. 

 
Example 4: Given that the sum of two numbers is 4 and their product is 8 then we can set up 

the system � + ; = 4 and �; = 8, where x and y are the two numbers required. Since the former 

equation can be expressed as � = 4 − ; the latter equation becomes ;�4 − ;� = 8 which 

simplifies to ;� − 4; + 8 = 0. Here Δ < 0 so we have 

; = 4 ± √16 − 322 = 2 ± 2� . 
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If ; = 2 + 2� then � = 2 − 2�, and if ; = 2 − 2� then � = 2 + 2�, hence our two numbers are � =2 + 2� and ; = 2 − 2� (or ; = 2 + 2� and � = 2 − 2�) 

 
Example 5: A number is called an algebraic number if it is the solution to a polynomial equation 

�C0C + �CD=0CD= + ⋯ + �=0 + �F = 0 

where �F, �=, … , �C are integers. By this definition we can show that √3 + √2 is an algebraic 

number as follows: let 0 = √3 + √2. Then 0 − √2 = √3 (expressing z in this form will ultimately 

help us eliminate all square roots). Hence  

 �0 − √2 �
 = 3 , 

⟹ 0� − 2√2. 0 + 2 = 3 . 
⟹ 0� − 1 = 2√2. 0 

Squaring again: 

 �0� − 1�� = 80� , 
⟹ 0H − 20� + 1 = 80� . 

Hence  0H − 100� + 1 = 0  
is the polynomial having integer coefficients which satisfies 0 = √3 + √2. In fact, the number 0 = √3 + √2 is a root of this polynomial.  

 
Exercise: Show that √4� − 2�, √2� + √3, and 2 − �√2 are algebraic numbers. 

 
Let us return to the problem of solving �
 = 15� + 2 mentioned in section 1.1 above. As before 

the following is taken from Stuart Dagger at Oxford University: “This example explains the 

curious fact we noted earlier in connection with the equation �
 = 15� + 2. 

�2 + ��
 = �2 + ����2 + �� 

 = �3 + 4���2 + �� 

 = 2 + 11� 

 
Look a bit harder at this and you will see the explanation for the problem we hit with the 

solution to �
 = 15� + 2. We had then a complicated expression involving, among other things, 
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√−121. With our new [complex] numbers √−121 can be written as 11i, since √−121 =
�121�−1� = 11√−1. So −2 + √−121 becomes 2 + 11i. We have just shown that the cube of  

2 + i is 2 + 11i, and so the cube root of 2 + 11i is 2 + i. Now verify that (2 − i)3 = 2 − 11i and note 

that this tells us that the cube root of 2 − 11i is 2 − i. Put these discoveries into the right-hand 

side of the equation (*) we had earlier, and you get x = (2 + i) + (2 − i). So x = 4, as required. This 

is the calculation that  intrigued Bombelli in 1572 and acted as the spark for complex numbers.” 

 
Examples 

1) To solve �
 + 3�� + 5� + 3 = 0 we proceed as follows: by trial-and-error (more properly 

by the factor theorem) we see that � = −1 solves this cubic. Hence we have  

�� + 1���� + �� + �� = �
 + 3�� + 5� + 3 = 0 . 
Comparing coefficients we have 

�
 ∶ 1 = 1 ; �� ∶ � + 1 = 3 

� ∶ � + � = 5 ; Constant: � = 3 

 
Hence the quadratic part of the cubic is �� + 2� + 3 which solves as 

� = −2 ± √4 − 122 = −1 ± �√2 . 
Hence the roots of the cubic are � = −1 , −1 + �√2 , −1 − �√2 . 
 
Exercise: Find all the roots of 0� + �1 + ��0 + 5� = 0. 

 
2) To solve �
 − 1 = 0 we know that � = 1 is a root. The other two roots are found as follows: 

�
 − 1 = �� − 1���� + �� + �� = 0 , 
after which we may compar coefficients: 

�
 ∶ 1 = 1 ; �� ∶ � − 1 = 0 

� ∶ � − � = 0 ; Constant: −� = −1 

Hence we have �
 − 1 = �� − 1���� + � + 1� = 0 , 
from which the roots of the quadratic are 

� = − 12 ± � √32  . 
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Hence we see that the cubic really does have three roots, two of which are complex. Also, 

remember that for any polynomial with real coefficients the sum of the roots equals −b/a, 

where a is the coefficient of �C and b is the coefficient of �CD=. In the case of �
 − 1 = 0 we have � = 1 and � = 0, so the sum of the roots should be 0. Is this true for our examples? Summing 

our three roots we have  

1 + ,− 12 + � √32 - + ,− 12 − � √32 - = 1 − 12 − 12 = 0 ,  
as required. This is an example of a wider range of examples called roots of unity, which we will 

study in more detail later. 

 

3) Suppose we have the quadratic �� + �20 + 10��� + J = 0. How can we find w if this 

quadratic has a double root? Well, start by setting up the factorised form of a quadratic having 

a double root, using � + �� as our root. Hence  

�� − �� + ��� � = �� + �20 + 10��� + J = 0 . 
Expanding the left hand side and comparing coefficients we get 

a) for ��: −2�� + ��� = 20 + 10�, implying −2� = 20, hence � = −10, and −2� = 10, 

hence � = −5; 

b) for x: �� − �� + 2��� = J, implying from a) that J = 75 + 100�. 

In other words we have �� + �20 + 10��� + J = �� + �20 + 10��� + 75 + 100�, which can be 

expressed as �� − �−10 − 5�� � = 0. 

 
Exercise: For what real values a, b does �� + �� + 4��� + � + 24� = 0 have complex double 

roots? 

 

4) Given that 0= = 1 + 2� is a root of 0� + �0 + � = 0, where �, � ∈ ℝ, we can can find � and � 

as follows: Since 0= is a root we have  

 �1 + 2��� + ��1 + 2�� + � = 0 

⟹ �−3 + � + �� + ��4 + 2�� = 0 

 
Comparing Re and Im parts we have  

Im: 4 + 2� = 0 ⟹ � = −2 

Re: −3 + � + � = 0 ⟹ � = 5 
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Therefore 0� − 20 + 5 = 0. We can test this via the quadratic formula to see if we obtain 0= as 

a root. 

 
An alternative solution is to solve the quadratic as follows: 

0 = − � + √�� − 4�2 = 1 + 2� . 
Comparing the Re part we have we have −�/2 = 1, implying � = −2. Now, remember that a 

and b are real, so in order to compare the Im part we have to convert √�� − 4� to an imaginary 

number. We can do this as follows: √�� − 4� = ��−1��4� − ��� = �√4� − ��. Hence  

 
√4� − ��2  = 2 

⟹ 4� − �� = 16 

from which � = 5. 
 

1.2.5 Deriving the quadratic formula using complex numbers 

This section is adapted from “Discussions: Relating to solutions of quadratic equations”, G. R. 

Dean, The American Mathematical Monthly, Vol 22, No. 7. (1915), pp. 243-244.  

 
It is possible to derive the quadratic formula without using the standard approach of 

factorisation or completing the squre. So, given �� = −1 let us substitute � = L + �M into the 

standard form quadratic ��� + �� + � = 0, where �, �, �, ∈ ℝ. This gives us  

��L + �M�� + ��L + �M� + � = 0 . 
Expanding and collecting real and imaginary parts we obtain 

��L� − M�� + �L + ��2�LM + �M� = 0 . 
Since the RHS of the above equation can be written as 0 + 0�, comparing real and imaginary 

parts LHS and RHS gives us 

i)   ��L� − M�� + �L + � = 0, and ii)  M�2�L + �� = 0 . 
We want to solve these two equation for L and M in terms of �, �, �. Let us consider ii): In general M ≠ 0 therefore  

L = − �2� . 
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Substituting this back into i) we obtain 

��4� − �M� − ��2� + � = 0 . 
Solving this last equation for M gives 

M = ±O−��4�� + �� = ±O−�� + 4��4�� = ± 12� �−�� + 4�� . 
Hence we roots � = L + �M = − �2� ± � 12� �−�� + 4�� . 
 
We can now highlight the following from this last equation: 

• If −�� + 4�� ≥ 0 then our roots are automatically expressed as complex numbers;  

• If −�� + 4�� < 0 then our roots are real since  

−�� + 4�� < 0 ⟹ −��� − 4��� = ����� − 4��� > 0 

hence � = − �2� ± � 12� ������ − 4��� =  − �2� ± 12� ��� − 4�� , 
 which is the standard quadratic formula. 

 

1.2.6 The arithmetic of i 

Let us return to the imaginary number i. By the fact that �� = −1 we are able to easily evaluate 

integer powers of i. So, starting with n = 0, where n is an integer, we have the following first four 

value of �C: 

�F �= �� �
 

1 i –1 –i 

 
The next four powers of i are 
 

�H �R �S �T 

1 i –1 –i 

 

and the cycle of 1, i, –1, –i repeats every fourth power. Knowing this we can simplify any integer 

power of i. For example �U = ����H = �−1�H = 1, or �U = ��H�� = �1�� = 1. Similarly, �== =�UV
 = �U. �
 = ��H��. ��. � = �1��−1�� = �. And another: �=FR = �=FH. � = ��H��S. � = �. 
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In general, when W = 0, 1, 2, 3, … we have the following formulae for the cyclic effect of 

multiplying by i: 

�HX = 1 , �HXV= = � , �HXV� = −1 , �HXV
 = −� . 
 
The discussion above related to the multiplicative effect of i. There is also a division effect of i. 

As such consider trying to perform 1/�. In this case we simply multiply this fraction by �/�. 

Hence  1� = 1� . �� = ��� = −� . 
We know directly that  

1�� = −1 and 
1�H = 1 , 

 
and for 1/�
 we have  1�
 = 1�� . 1� = � . 
 
Rewriting division as multiplication by a negative exponent we can form a table of the cyclic 

effect of multiplication and division by i as shown below: 

 �DH �D
 �D� �D= �F �= �� �
 

1 � −1 −� 1 i –1 –i 

 

Here we have seen the algebraic effect of multiplying and dividing by i. Later on we will see 

their geometric effect, along with the geometric effect of multiplying and dividing complex 

numbers by other complex numbers. Now, remember that the geometric effect of multiplying 

any number by a real number is to strectch or shrink the former number: 2×3 stretches 3 to 

become 6, ½×6 shrinks 6 to become 3. In the case of of complex numbers we will see that 

multiplication and division give rise not only to stretching but also to rotation. 

 

More examples 

1) Write the following in the form 0 = � + ��: 

i) 2�
 − 3�� + 5� , ii) 5/� + 2/�
 − 20/�=U , iii) 3�R − �H + 7�
 − 10�� . 
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 Solution 

 Using the cyclic properties of i, whereby �� = −1 and �H = 1, we have 

 i) 2�
 − 3�� + 5� = 2����. � − 3�� + 5� = −3�−1� + 2�−1�. � + 5� = 3 + 3� ; 
 ii) 3�R − �H + 7�
 = 3��H�. � − �H + 7����. � = 3� − 1 − 7� = −1 − 4� ; 
 iii) 

5� + 2�
 − 20�=U = −5� + 2� − 20��H�H . 1�� = 20 − 3� . 
 

2) Given that 0 = � + �;, find the following: 

i) Z[��0� , ii) \]�0/� � , iii) \]�1 + �0� . 
Solutions 

 i) Z[��0� = Z[���� + �;� = Z[��� + ��;� = Z[�−; + ��� = −; ; 
 ii) \]�0/� � = \]�−�0� = \]�−��� + �;� = \]�−�� − ��;� = \]�; − ��� = −� ; 
 iii) \]�1 + �0� = \]�1 + ��� + �;� = \]�1 + �� + ��;� = \]�1 − ; + ��� = � . 
 

1.2.7 The conjugate of a complex number 

One thing to note about the solutions of all the quadratics above which involved complex roots 

is that their roots have the same real parts but imaginary parts of opposite sign, i.e. 2 + � and 2 − �, or 4 + 3� and 4 − 3�, etc. This is not a coincidence. This effect comes from the “±” of the 

quadratic formula.  

 
In complex number work we therefore define something called the conjugate of a complex 

number. Therefore, given a complex number 0 = � + �� the conjugate of 0, symbolised as 0∗ or 0̅, is given by  0∗ = � − �� or 0̅ = � − �� . 
The conjugate is therefore simply a change in the sign of the imaginary part. For example, if 0= = 5 + 3� then 0=∗ = 5 − 3�; if 0� = −4 − � then 0�∗ = −4 + �. Also note that the conjugate of 5 − 3� is 5 + 3�. In other words, the conjugate of the conjugate leads to the original complex 

number: �0=∗�∗ = 0=. 
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Geometrically speakng, the conjugate of z is simply a reflection of z about the real axis, as shown 

below: 

Im

Re

z
1

z
1

z
2

z
2

 

If the conjugate is a reflection in the Re axis how do we express a reflection in the Im axis? We 

do so as follows: if 0 = � + �� then J = −� + �� is a reflection in the Im axis.  

 
Example 1: Given that the complex roots of a quadratic equation with real coefficients occur in 

conjugate pairs, it is straightforward to find values p and q (where `, a ∈ ℝ) in �� + `� + a = 0 

when one root is known to be �. In that case we know the other root to be −�. Hence  

�� + `� + a = �� − ���� − �−��  , 
 = �� + 1 . 

Comparing coefficients we have ` = 0 and a = 1. 

 
Example 2: To find the equation which satisfies 00∗ = 1 we proceed as follows. If 0 = � + �; 

we have �� + �;��� − �;� = 1. This gives �� − ��; + ��; − ��; = 1 which simplifies to �� +;� = 1. Hence 00∗ = 1 can be said to represent a circle of centre �0, 0� and radius 1. 

 
Example 3: To find the equation which satisfies 0+�0∗ + 1 + � = 0 we proceed as follows. 

Again, let 0 = � + �;. Then we have  

�� + �;� + ��� − �;� + 1 + � = 1 + � + ; + ��1 + � + ;� = 0 . 
 We now compare Re and Im parts left and right of this equation to obtain  

Z[: 1 + � + ; = 0 and  \]: 1 + � + ; = 0. 

Both of these equation imply ; = −1 − �, therefore 0+�0∗ + 1 + � = 0 can be said to represent 

a straight line of slope −1 and y-intercept −1. 

 
Exercise: Find the equation which satisfies i) 0 + 0∗ + 2 = 0, ii) 0 + 0∗ + 2� = 0. 
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Example 4: Given that 0= = �= + �;= and 0� = �� + �;� show that 0=0�c + 0�0=c  is real. 

Solution:  

0=0�c + 0�0=c  = ��= + �;=���� − �;�� + ��� + �;����= − �;=� , 
 = �=�� + ;=;� + ����;= − �=;�� + �=�� + ;=;� − ����;= − �=;�� , 
 = 2��=�� + ;=;�� . 

Hence 0=0�c + 0�0=c  is real. 

 

Example 5: Write the following in the form 0 = � + �;: 

i)  0 − 20∗ + 7 − 6� = 0 , ii)  0̅ = 40 , iii) 20 = �∗�2 + 9�� . 
 
Solutions 

 i) 0 − 20∗ + 7 − 6� = � + �; − 2�� − �;� + 7 − 6� = �−� + 7� + ��3; − 6� = 0 ; 
 ii) 0̅ = � − �;, and 40 = 4�� + �;� = 4� + 4�;. Hence  

 � − �; = 4� + 4�; , 
⟹ 3� + 5�; = 0 . 

 iii) 20 = 2�� + �;� = 2� + 2�;, and �∗�2 + 9�� = −��2 + 9�� = −2� + 9. Hence  

 2� + 2�; = 9 − 2� , 
⟹ �2� − 9� + 2��; + 1� = 0 . 

 

Example 6: Given that 0 = � + �;, what can be said about 0̅ = 0 and 0̅ = �0? 

Solution: If 0̅ = 0 then � − �; = � + �;. Hence 2�; = 0, i.e. ; = 0. Therefore z is real. 

 If 0̅ = �0 then � − �; = ��� + �;�. Hence � − �; = −; + ��, i.e. � + ; = ��� + ;�. 

 Dividing by � + ; we have � = 1. But we know that � = √−1 hence there is no 

equation which satisfies 0̅ = �0. 

 

We can now use the definition of the conjugate of 0 = � + �; to express x and y in terms of 0 and 0̅ as follows: 0 + 0̅ = 2� and 0 − 0̅ = 2�;. Therefore  

 Z[ �0� = � = 0 + 0̅2  and \]�0� = ; = 0 − 0̅2�  . (3) 
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For example, if 0 = −2 + � then 0̅ = −2 − �, hence  

� = −2 + � − 2 − �2 = 4 and ; = −2 + � − �−2 − ��2� = 2� . 
 
Equations (3) can then be used to express any equation in Cartesian form into one in complex 

number form. Such a complex number form is called complex conjugate coordinates. For 

example if that 0 = � + �;, then we can express 2� + ; = 5 as  

2 �0 + 0̅�2 + �0 − 0̅�2� = 5 . 
Cross multiplying and expanding we get  

�2� + 1�0 + �2� − 1�0̅ = 10� . 
 
On the other hand we can also find the Cartesian equation of an expression already expressed 

in complex-conjugate form. For example, if 0 + 0̅ = 4 then � + �; + � − �; = 4. Implying that � = 2. 

 
Examples  

1) Given that 0 = � + �;, express each of ]� + d; = W (where ], d ∈ ℝ) , �� + ;� = 36 and �� − 3�� + ;� = 9 in complex conjugate form. 

 Solution  

 If ]� + d; = W (where ], d ∈ ℝ) then by (3) we have 

] e0 + 0̅2 f + d e0 − 0̅2� f = W . 
 Cross-multiplying by 2, and remembering that 1/� = −�, this simplifies to 

�] − d��0 + �] + d��0̅ = 4W . 
 
 If �� + ;� = 36 then by (3) we have 

e0 + 0̅2 f� + e0 − 0̅2� f� = 36 . 
 Expanding we get  

14 �0� + 20. 0̅ + 0̅�� − 14 �0� − 20. 0̅ + 0̅�� = 36 , 
 from which we obtain   0. 0̅ = 36 . 
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 Another way of solvint his is to notice that 0. 0̅ = �� + �;��� − �;� = �� + ;�. Hence we 

have directly that 0. 0̅ = 36. 

 

 If �� − 3�� + ;� = 9 then we have �� − 6� + 9 + ;� = 9. Then by (3) we obtain 

e0 + 0̅2 f� − 6 e0 + 0̅2 f + 9 + e0 − 0̅2� f� = 9 . 
 Expanding gives 

14 �0� + 20. 0̅ + 0̅�� − 3�0 + 0̅� + 9 − 14 �0� − 20. 0̅ + 0̅�� = 9 , 
 from which we obtain  0. 0̅ = 3�0 + 0̅� . 
 

2) Left as an exercise: Given that 0 = � + �;, express �� − ��� + �; − ��� = g� in complex 

conjugate form, where �, � ∈ ℝ. 

 

3) Find the Cartesian equations of the complex-conjugate equations 0̅ = 0 + 6� and 00̅ − 20 −20̅ − 8 = 0. 

 Solution  

 If 0̅ = 0 + 6�, then  � − �; = � + �; + 6� , 
 which simplifies to ; = −3. 

 
 If 00̅ − 20 − 20̅ − 8 = 0, then  

�� + �;��� − �;� − 2>�� + �;� + �� − �;�? − 8 = 0 , 
 which simplifies to �� − 2� + ;� − 8 = 0 . 
 This expression can be transformed into the equation of a circle by completing the square 

on �� − 2�. Hence  �� − 2� + 1 − 1 + ;� = 8 , 
 which simplifes to �� − 1�� + ;� = 9 . 
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1.2.8 Certain properties of the conjugate 

In this section we will go through proofs of certain properties involivng the conjugate of a 

complex number z. We will start with a few simple properties which may seem obvious. The 

point about showing these simple properties is to gain experience in the nature and 

presentation of proofs. 

 

Property 1: If 0 = � + �; prove �0∗�∗ = 0. 

Proof:  Given 0 = � + �; then 0∗ = �� + �;�∗ = � − �;. Hence �0∗�∗ = �� − �;�∗ = � + �; = 0. ∎ 

Comment: The nature of a proof is that every mathematical statement beyond what is already 

given, or known prior, has to be explcitely developed. So, since 0∗ is not given to us we must 

develop the step which leads to it. Now, this may seem trivial, but it is in the nature of proofs 

that we should do this explicitly, hence the reason for me writing “0∗ = �� + �;�∗ = � − �;”. 

More than this, I have presented the intermediate step of �� + �;�∗ as a matter of clarity 

(although this need not be done). 

I have hten repeated this whole form of presentation for �0∗�∗, at the end of which I have 

explicitely stated the equality with 0 (as the last statement of the proof) as a matter of 

definitively confirming the original statement. 

 

Property 2: If 0 = � + �; prove 0. 0∗ = |0|�. 

Proof:  Given 0 = � + �; then |0|� = ���� + ;� � = �� + ;�. Also, we have 0∗ = �� + �;�∗ =� − �;. Therefore 0. 0∗ = �� + �;��� − �;� = �� + ;� = |0|�. ∎ 

 

Property 3: If z is such that |0|� = 1 prove 0∗ = 1/0. 

Proof: By property 2 we know 0. 0∗ = |0|�. If |0|� = 1 then 0. 0∗ = 1, implying 0∗ = 1/0. ∎ 

 

Property 4: If 0 = � + �; prove �0��∗ = �0∗��  

Proof:  Given 0 = � + �; then 0� = �� + �;�� = �� − ;� + 2��;. Therefore �0��∗ = �� − ;� −2��;. Now, 0∗ = � − �;, hence �0∗�� = �� − �;�� = �� − ;� − 2��;. Thus �0��∗ = �0∗��. ∎ 
It is true that �0C�∗ = �0∗�C for any integer n. this can be proved by induction, which is left as 

an exercise.  
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Property 5: For a complex number 0 prove 0 = 0∗ if and only if z is real.  

Proof:  i) Given 0 = � + �; we have 0∗ = � − �;. Then � + �; = � − �; only if ; = 0 implying that 0 is real; ii) on the other hand, if 0 is real then, by definition of 0 = � + �;, we have ; = 0. ∎ 
As an example, if 0 = 7 then 0∗ = 7. 
 

Property 6: If 0= and 0� are two complex numbers prove �0= + 0��∗ = 0=∗ + 0�∗. 

Proof:  Let 0= = �= + �;= and 0� = �� + �;�. Then  

�0= + 0��∗ = ��= + �;= + �� + �;��∗ , 
 = ��= + �� + ��;= + ;�� ∗ , 
 = �= + �� − ��;= + ;�� , 
 = �= − �;= + �� − �;� , 
 = ��= + �;=�∗ + ��� + �;��∗ , 
 = 0=∗ + 0�∗ . ∎ 

 
By extension we have �0= + 0� + 0
�∗ = �0= + 0��∗ + 0
∗ = 0=∗ + 0�∗ + 0
∗, etc. 

 
Note that a complex number is a number of the form/structure 0 = j + �k. We can only take 

the conjugate of a complex number when z is of this form. Hence we have had to do some initial 

algebra in order to transform the two separate complex numbers 0= and 0� into the form of the 

compound complex number “0= + 0�”. Only then can we take the conjugate of this compound 

number. From this we then separate out the components of 0= and 0� in order to finish the proof. 

As an example, if 0= = 1 − 2�, 0� = −2 − � and 0
 = 3 − 6�, then 0= + 0� + 0
 = 2 − 9�. Hence �0= + 0� + 0
�∗ = 2 + 9�. On the other hand, 0=∗ = 1 + 2�, 0� = −2 + �, and 0
 = 3 + 6�. 

Therefore 0=∗ + 0�∗ + 0
∗ = 2 + 9� = �0= + 0� + 0
�∗. 

 

Property 7: If 0= and 0� are two complex numbers prove �0=0��∗ = 0=∗0�∗. 

Proof:  Let 0= = �= + �;= and 0� = �� + �;�. Then  

�0=0��∗ = >��= + �;=���� + �;��?∗ , 
 = ��=�� − ;=;� + ���=;� + ��;=� ∗ , 
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So �0=0��∗ = �=�� − ;=;� − ���=;� + ��;=� , 
 = �=�� − ���=;� + ��;=� + ��;=;� , 
 = ��= − �;=���� − �;�� , 
  ��= + �;=�∗��� + �;��∗ , 
 = 0=∗0�∗ . ∎ 

 
The same comment applies here as for property 4: a complex number is a number of the 

form/structure 0 = j + �k. We can only take the conjugate of a complex number when z is of 

this form. Hence we have had to do some intial algebra in order to transform the two separate 

complex numbers 0= and 0� into the form of the compound complex number “0=0�”. Only then 

can we take the conjugate of this compound number. From this we then separate out the 

components of 0= and 0� in order to finish the proof.  

 
As an example, if 0= = 1 − 2�, and 0� = −2 − � then 0=0� = −1 + 3�. Hence �0=0��∗ = −4 − 3�. 

On the other hand 0=∗ = 1 + 2� and 0�∗ = −2 + �. Hence 0=∗0�∗ = −4 − 3� = �0=0��∗. 

 
Exercise: Prove �0=/0��∗ = 0=∗/0�∗. 

 
Property 8: If 0= and 0� are two complex numbers prove 0=0�∗ + 0=∗0� = 2Z[�0=0�∗� 

Proof: Let 0= = �= + �;= and 0� = �� + �;�. Then  

0=0�∗ + 0=∗0� = ��= + �;=���� + �;��∗ +  ��= + �;=�∗��� + �;��, 
 = ��= + �;=���� − �;�� + ��= − �;=���� + �;��, 
 = �=�� + ;=;� − ���=;� − ��;=� + �=�� + ;=;� + ���=;� − ��;=� , 
 = 2��=�� + ;=;�� . 

Also,  2Z[�0=0�∗� = 2Z[>��= + �;=���� − �;��? , 
  2Z[>�=�� + ;=;� − ���=;� − ��;=�? , 
 = 2��=�� + ;=;�� . 

 
Hence 0=0�∗ + 0=∗0� = 2Z[�0=0�∗�. ∎ 
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As an example, if 0= = 1 − 2�, and 0� = −2 − � then 0=0�∗ = �1 − 2���−2 + �� = 5�, and 0=∗0� =�1 + 2���−2 − �� = −5�. Therefore, 0=0�∗ + 0=∗0� = �5�� + �−5�� = 0. But note that 2Z[�0=0�∗� =2Z[�5�� = 0. Hence 0=0�∗ + 0=∗0� = 2Z[�0=0�∗�. 

 

Property 9: If 0= is a root of l�0� = �0� + �0 + �, where �, �, � ∈ ℝ, show that 0=c  is also a root. 

Proof: We know that l�0=� = �0=� + �0= + � = 0. For l�0=c � we have  

l�0=c � = ��0=c �� + ��0=c � + � . 
By the property �0̅�C = �0C�mmmmmm (left as an exercise) we have 

l�0=c � = �0=�mmm + �0=c + � . 
Since a, b, and c are real numbers they are their own conjugates we can write 

l�0=c � = �0=�mmmmm + �0=mmmmm + �̅ . 
By the property J + 0mmmmmmmm = Jc + 0 ̅we have 

l�0=c � = �0=� + �0= + �mmmmmmmmmmmmmmmmmm . 
But we know that �0=� + �0= + � = 0 hence l�0=c � = 0. 

 
This property applies to a polynomial of any degree, not just a quadratic. In other words, if 0= is 

a root of l�0� = �C0C + �CD=0CD= + ⋯ + �=0 + �F, where �F, �=, … , �CD=, �C ∈ ℝ, then 0=c  is also 

a root of l�0�. 

 ∎ 
 

Properties such as those above are useful in simplifying expressions involving complex 

numbers or functions. For example, consider the complex quadratic <�0� = 20� − 30 + 1. Then  

�<�0� ∗
 = �20� − 30 + 1�∗ ,  

 = �20��∗ − �30�∗ + �1�∗ , by property 2. 

 = �2�∗�0��∗ − �3�∗�0∗� + �1�∗ by property 3. 

 = 2�0∗�� − 30∗ + 1 . by property 4. 
& property 6. 
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Exercises: 

Given two complex numbers 0 and J, where relevant, are the following statements true? If they 

are prove them, otherwise find a counter example: 1)  �0∗ + J�∗ = 0 + J∗, 2)  0 + 0∗ = 2Z[�0�, 

3)  0 − 0∗ = 2�. \]�0�, 4)  0/0∗ = �0 + 0∗�/|0|�. 

 
1.3 Complex roots can be located on a Cartesian graph – Part 1 

 

1.3.1 Locating the complex roots of a quadratic equation. 

The following idea is based on the paper “74.35 Imagine the Roots of a Quadratic”, C. R. Holmes,  

The Mathematical Gazette, Vol. 74, No. 469 (Oct., 1990), pp. 285-286. 

 
Consider the three quadratics and their graphs on the folowing page. Since the roots of a) and 

b) are real they can be seen on the standard x−y graph as the points where <��� intersects the 

x-axis. Therefore we can read off the roots for a) and b) directly from each graph. However, 

there is another way of reading such roots:  

i) Find the x value of the minimum point (algebraically this is the point of symmetry given 

by � = −�/�2��). In the case of a) we have � = 2; 

ii) Find the distance d of this x value to the points of intersection of <��� with the x-axis. In 

the case of a) we have n = 1; 

iii) Find the roots by adding ii) to i), and subtracting ii) from i). In the case of a) we have one 

root = 2 − 1 = 1, and the other root = 2 + 1 = 3; 

 Quadratic  Roots  Graph  

a) <��� = �� − 4� + 3 = 0 , � = 1, 3 
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b) <��� = �� − 4� + 4 = 0 , � = 2, 2 

 

c) <��� = �� − 4� + 5 = 0 , � = 2 ± � 

 

For c) there are no points of intersection since the roots of <��� are complex, so we cannot read 

off the roots directly from the graph. However, suppose we reflect the curve shown in c) about 

its minimum point. Our function becomes o��� = −�� + 4� − 3, and we then have the curve 

shown as a red dash in the graph below: 

 

 

The roots of o��� are � = 1, 3. Then, by using the procedure described in i) – iii) above we can 

obtain the complex roots as follows:  

• the real part of the complex number is the x value of the point of symmetry (now a 

maximum point). Here Z[�0� = 2; 
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• the imaginary part is the distance from this x value to the point of intersection of <��� 

with the x-axis. Here \]�0� = 1; 

• distances to the left of the point of symmetry are negative values, and distances to the 

right of the point of symmetry are positive values. Hence 0= = 2 − �, and 0� = 2 + �. 

 

Similarly if <��� = �� + 7� + 15 we 

reflect <��� about the line 

containing the point of symmetry.  

 
Our reflected function is then  

o��� = −�� − 7� − 9.5 . 
Then we find the points of 

intersection of o��� with the x-axis 

(i.e. the roots of o���), these being 

�pqqrs ≈ −5.158, −1.842 . 
Then we find the distance between �pqqrs and �suvvwrpu , this being  

n = 1.658 . 
Noting that the distance to the left of �pqqrs is negative and distance to the right of �pqqrs is 

positive we have the complex roots of <��� to be 0= = −3.5 + 1.658� and 0� = −3.5 − 1.658�. 

 
In general it can be shown that the the real roots of a reflected quadratic lead to the complex 

root of the original quadratic. To do this we will need to find the equation of the line about 

which we releflect the quadratic, and then solve this reflected quadratic for its (real) roots. 

 
Therefore, let <��� = ��� + �� + � = 0 be a quadratic such that Δ = �� − 4�� < 0. We know 

from standard algebra that the x-value of the point of symmetry of <��� is �suvvwrpu = −�/�2�� 

(found by the usual procedure of completing the square on <���). 

 
In order to reflect <��� about the horizontal line containing �suvvwrpu we need to find the 

equation of this line. We do this by substituting �suvvwrpu = −�/�2�� into <��� to get 

 ; = < e− �2�f = � e− �2�f� + � e− �2�f + � , 
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⟹ ; = 
−�� + 4��4�  . 

We now have the equation of the line about which we need to reflect ; = <���, as illustrated by 

the configuration illustrated below: 

 

Now, reflecting the curve of <��� about a horizontal line ; = x is done via the transformation ; = −�<��� − x� = −<��� + x. Let our reflected quadratic be o���. We then have  

o��� = −��� − �� − � + −�� + 4��4�  . 
By design, o��� has real roots, so we can solve this as usual by the quadratic formula, viz: 

� = � ± ��−��� − 4 y�−�� e−� + −�� + 4��4� fz−2�  , 
which, after some algebra, simplifies to  

 � = � ± √−�� + 4��−2�  . (4) 

Now notice that the discriminant of (4): this can be written as ��−1���� − 4��� = �√�� − 4��. 

Hence the real roots �{�|� of o��� are the complex roots �}�|� of <���: 

�{�|� = − � ± √−�� + 4��2� =  − � ± �√�� − 4��2� = �}�|� , 
when <��� has discriminant Δ < 0. 
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1.3.2 Locating the complex roots of a cubic equation. 

Just as the complex roots of a quadratic can be found on an �-; graph, so can the complex roots 

of a cubic. Now, we know that a cubic equation has either three real roots, or one real root and 

two complex roots. It is this latter form of cubic which we will now study in order to see how 

the graph of such a cubic shows the location of the complex roots. 

 
As such let the roots of the general cubic ; = `�
 + a�� + g� + ~ = 0 be � = � and � = � ± ��, 

where �, �, � ∈ ℝ. Such a cubic can theefore be factorised as 

; = �� − ���� − >� + ��?��� − >� − ��?� = 0 , 
which simplifies to  ; = �� − ����� − 2�� + �� + ��� = 0 . 
Our aim is to find a and b, and to do this will will need two equations. We obtain these two 

equations by using whatever geometric means we can. In this case we will use the simple 

geometric properties of secants and tangent to the cubic. 

 
The diagram below will help us visualise such geometry as we go through our analysis. 

 

 

 

We first draw a secant LMN through the cubic, where L is the real root � = �. The general 

equation of a line is given by ; − ;= = ]�� − �=�, hence for line LMN we have 

; = ]�� − �� . 
When this line intersects the cubic at M and N we obtain  

]�� − �� = �� − ����� − 2�� + �� + ��� ,  
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which simplifies to  

�� − 2�� + �� + �� − ] = 0 . 
Solving this gives the x ordinate of M and N to be 

 � = � ± √] − �� . (*) 

Points M and N will have the same x ordinate when the two equations in (*) are equal, implying 

that ] = ��, from which we have � = �. The line becomes LP which is now tangent to the cubic. 

But this tangent is also the slope of line LP. So  

slope of LP= �� = tan � , 
Therefore, our complex roots � = � ± �� can be located as follows: for the tangent to the cubic 

through the real root � = � is such that 

• the real part a is the x ordinate of the point of tangency P. This can be read off directly 

by drawing a vertial line from P to the x-axis;  

• the imaginary part b is found as � = √tan �, where θ  is read off the graph, or by ] = ��. 

In this latter case we find b as � = �|]| since we are only interested in the magnitude 

of the slope and not its direction (i.e. whether it is positive or negative). See example 3 

below for an illutration of this.  

 
Note that the appearance of tan � as part of the analysis above for complex roots is not a 

coincidence. It plays a fundamental role as we shall see in sections 1.11 onwards. 

 
Example 1:  

Plotting the cubic ; = �
 − 3�� + � + 5 we have the graph below. From this we see that there 

is only one real root of ; located at � = −1. The other two roots are therefore complex, of the 

form � = � ± ��. We now draw a line which passes through �−1, 0� which is tangent to the 

curve, as shown. 
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From the graph we see that the point of tangency has x ordinate � = 2. This value is the real 

part of the complex root. For the imaginary part we need to find the angle of the tangent line, 

which can be easly seen to be � = 6/4. Hence � = �tan 6/4 = ±1. Hence the roots of the cubic 

are given as � = −1, � = 2 + �, and � = 2 − �. 

 
Example 2: 

Plotting the cubic ; = �
 − 3�� + � + 5 we have the graph below 

 

Again we see that the real root is given by � = 4. The line drawn through � = 4 which is tangent 

to the cubic is illustrtaed by the black dashed line.  
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By visual inspection we see that the x-ordinate of the point of tangency is � = 0. Since this 

represents the real part of the complex root we have that there is no real part to the complex 

roots of ;.  

 
We now find the angle the tangent line makes with the x-axis, which can be seen to be � = 6/4. 

Hence the imaginary parts of the complex roots are � = �tan 6/4 = ±1.  

 
Hence the roots of the cubic are given as � = 4, � = �, and � = −�. 

 

Example 3: 

Plotting the cubic ; = −�
 + �� + � − 4 we have the graph below. By visual inspection we find 

that the real root of ; is � ≈ −1.5.  

 

Then, using either the method of bisection or Newton-Raphson method (two examples of 

numerical methods for finding approximate solutions to roots of equations) we can use this 

value as the initial estimate �F to obtain the improved solution � ≈ −1.4856 to 4 d.p. 

 

 

We then draw a line through � ≈ −1.4856 which is tangent to the cubic as shown by the black 

dashed line. Again by visual inspection we estimate the x ordinate of the point of tangency to be � ≈ 1.2 (illustrated by the vertical dashed line from the tangent point to the x-axis). This value 

is the real part of the complex root. For the imaginary part we need to find the angle of the 

tangent line.  
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This can be found as  

] ≈ −;�1.2�1.2 − �−1.4856� = − 3.12.686 = −1.154 . 
Hence  

� = �|]| = √1.154 = 1.074 . 
 
Hence the roots of the cubic are given approximately as � ≈ 1.2 + 1.074�, � ≈ 1.2 − 1.074�, and � ≈ −1.486 

 

1.4 The Argand diagram, |z| and arg(z) 

Recall that real numbers can be represented geometrically as points on a number line: 

 

 

 
They can also be seen as distances, measured from 0.  
 
Similarly, complex numbers can be represented geometrically. But because they have two 

components, a real part and an imaginary part, we draw complex numbers as points on a two 

dimensional graph. We therefore represent complex numbers on a graph by plotting the real 

part on a horizontal Re axis, and the imaginary part on a vertical Im axis. So numbers such as 0= = 1 + 2� or 0� =  −2 + � are drawn as illustrated below: 

   

 Complex numbers as points on a graph Complex numbers as vectors 
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Notice that complex numbers can also be interpreted as distances from the origin (0, 0). In this 

case they can also be seen as vectors. 

 
Now that we know how to plot a complex number 0 what can we say about the geometric effect 

of doing 0∗ and −0? For 0 = � + �; we have 0∗ = � − �; and −0 = −� − �;. Geometrically, the 

effect of taking the conjugate of a complex number is simply to reflect it in the Re axis, and the 

effect of doing −0 is to reflect z in the Re axis then in the Im axis (or vice-versa), as illustrated 

in the diagram below. 

 
Geometric effect of 0∗ = � − �; and −0 = −� − �; given 0 = � + �; 

 

Having plotted a complex number 0 = � + �; we are now in a position to derive two new 

features of z: its length r , calculated via Pythagoras’ theorem, and the angle θ  it makes with the 

real axis, calculated  in terms of arctan.  

 
Hence  

• length r is the modulus of the complex number and is denoted |0|:  
 g = |0| = ��� + ;� (5) 

 
• angle � is called the argument of the complex number and is denoted arg(z): 

 � = arg�0� = tanD= ;� , (6) 

 
where � is measured in radians, and is positive if measured anticlockwise from the 

positive real axis, or negative is measure clockwise from the positive real axis. 
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• the relationship connecting g and � to � and ; is 

 � = g cos � and ; = g sin � . (7) 

 
Equations (5) – (6) allow us to convert a complex number from Cartesian form to polar form, 

and equations (7) allow us to convert a complex number from polar form to Cartesian form. An 

illustration of these two forms is shown below. 

 

  

 Complex number z in a Cartesian form Complex number z in a polar form 

 
Example 1: For 0 = 1 + 2� we have g = |0| = √1� + 2� = √5, and � = arg�0� = tanD= 2 ≈ 1.11 

radians.  

 
Example 2: For 0 = 2 − 3� we have g = |0| = √2� + 3� = √13, and the angle � = arg�0� =tanD=�3/2� ≈ 0.98 radians.  

 
Example 3: Here are some other examples of complex numbers along with their modulus and 

arguments 

 
Example 4: To find the equation which satisfies |0 − 1| = 1, for all complex numbers 0 we 

proceed as follows: let 0 = � + �;. Then |� + �; − 1| = 1 implies ��� − 1�� + ;� = 1 which 

implies �� − 1�� + ;� = 1. This happens to be a circle of centre �1, 0� and radius 1. 

 
Example 5: To find the equation which satisfies Z[�0�� = �√3 − �� we proceed as follows: let 

0 = � + �;. Then Z[�0�� = Z[�� + �;�� = �� − ;�. Separately we have �√3 − �� = 2. Hence the 

equation which satisfies Z[�0�� = �√3 − �� is �� − ;� = 2 which is a hyperbola centred at �0, 0�. 
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Exercise: Find the equation which satisfies |0| = Z[�0�. 

 
Example 6: If 0 = � + �; then what values of x and y satisfy |0| − 0 = 2 + �? To answer this  we 

rewrite the equation as ��� + ;� − �� + �;� = 2 − �. Therefore ��� + ;� = 2 + � + ��; − 1�.  

Hence �� + ;� = >2 + � + ��; − 1�?� = �2 + ��� − �; − 1�� + 2��2 + ���; − 1�. Comparing Re 

and Im parts we have  

Re: �� + ;� = �2 + ��� − �; − 1�� = �� − ;� + 2� + 2; + 3. 

Hence  
 0 = 2� + 2; + 3. (*) 

and \]: 0 = 2�2 + ���; − 1�, hence 

 0 = 4; − 2� + 2�; − 4. (**) 

Substituting (*) into (**) and simplifying we obtain 2�� + 9� + 10 = 0. This quadratic is 

satisfied by the values � = −5/2 and � = 2, and the respective values of y are −4 and −7/2. 

 
Exercises: If 0 = � + �;, for what values of x and y is i) |0| + 1 + 12� = 60 satisfied, and ii) 20 =|0| + 2� satisfied? 

 

1.5 Complex roots can be located on a Cartesian graph – Part 2 

The following idea is adapted and extended from the paper “Visualizing the Complex Roots of 

Quadratic and Cubic Equations”, Alan Lipp, The Mathematics Teacher, Vol. 94, No. 5 (May 2001), 

pp. 410-413 (for further informtation see also: “Graphic Algebra”, Arthur Schultze, 1909, The 

Macmillan Company; “Graphic Algebra (second edition)”, A. Phillips, W. Beebe, 1904, Henry 

Holt and Company).  

 
The real roots of any function ; = <��� can be visually identified by the fact that the curve of 

the function crosses the x-axis. This is not the case for complex roots of ; = <���. In section 1.3 

we saw a way in which the complex roots of ; = <��� could be identified, but these roots might 

be said to be hidden within the structure of the graph, rather than being explicitly visible as 

curves crossing axes. Therefore, it would be nice if a way could be found to visually identify 

comples roots in the same way as we do for real roots, and this can indeed be done as we shall 

now see.  

 
1.5.1 Locating the complex roots of a quadratic equation 

Let us therefore start with the quadratic ; = <��� = �� + 4. The two roots of <��� = 0 are � =±2� and we want to be able to see these directly on Cartesian graph. In order to conduct a study 
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of complex roots in general we need to study the equivalent complex function J = <�0� = 0� +4, where 0 is the complex variable 0 = L + �M.  

 
Substituting z into <�0� gives  

J = <�0� = �L + �M�� + 4 = L� + 2�LM + ��M� + 4 = 0 , 
which simplifies to  J = <�0� = L� − M� + 4 + 2�LM = 0 . 
Notice that this equation is an equation in two variables L and M. If we are going to plot such an 

equation we need to do so in 3-dimensions. In that case the L axis will represent the real part 

of 0, the M axis will represent values of the imaginary part of 0, and J will represent the output 

values of {*}. Plotting the above equation directly gives us a 2D surface for all L and M. But we 

are not interested in this. We are interested in certain sections of the surface which relate to 

the real and imaginary parts of ; = <���. 

 
To obtain these sections we equate Re and Im parts left and right of the equation above to get,  

 Z[�J� = L� − M� + 4 = 0, {*} 
and  
 \]�J� = 2LM = 0. {**} 
 
From {**} we have 2LM = 0 implies L = 0 or M = 0. Now, setting M = 0 in {*} allows us to study 

the behaviour of the real part of ; = <���, and setting L = 0 in {*} allows us to study the 

behaviour of the imaginary part of ; = <���. Hence, by i) we have Z[�J� = Z[�;� = L� + 4 =0 when L = 0, and Z[�J� = \]�;� = −M� + 4 = 0 when M = 0. We can therefore plot  

• Z[�J� = Z[�;� = L� + 4 when M = 0. This curve is called a branch of the quadratic ; =�� + 4. Plotting Z[�;� = L� + 4 in 3-D produces a parabolic curve in the real plane LJ, 

as shown by the red curve in the diagram below. This function is exactly the same as ; =�� + 4 in the usual Cartesian frame of reference. Since Z[�;� = L� + 4 does not have any 

real roots we see that the red curve does not cross the LJ axis, this latter plane being 

equivalent to the standard �; plane in 2D. 

• Z[�J� = \]�;� = −M� + 4 when L = 0. This curve is the other branch of the quadratic ; = �� + 4. Plotting \]�;� = −M� + 4 in 3-D produces a parabolic curve in the plane M;, 

as shown by the blue curve in the diagram below. Note that \]�;� = −M� + 4 is just a 

plot of Z[�;� = L� + 4 reflected about the vertex of this latter equation (i.e. the same 

type of reflection as was presented in section 1.3.1). The points of intersection of this 

curve with the M axis is the location of the complex roots of ; = �� + 4. 
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The complex roots of ; = �� + 4 are then located at the intersection of \]�;� = −M� + 4 and 

the imaginary axis M. 

 

Plots of Z[�;� = L� + 4 (in red) and \]�;� = −M� + 4 (in purple) illustrating the real and 

imaginary branches of ; = �� + 4, along with its complex roots. 

 
As another example let us graphically locate the complex roots of ; = �� − 6� + 13 = 0. 

Recasting this equation in complex variable form we want to find the roots of J = <�0� = 0� −60 + 13 = 0. Again, for any complex root 0 = L + �M we have  

J = <�0� = �L + �M�� − 6�L + �M� + 13 = 0 , 
 = L� + 2�LM + ��M� − 6L − 6�M + 13 = 0 , 

which, on grouping real and imaginary parts, gives  

J = L� − M� + 6L + 13 + ��2LM − 6M� = 0 . 
Equating Re and Im parts left and right of this equation we obtain,  

 Z[�J� = L� − M� + 6L + 13 = 0 , (*) 

and 
 \]�J� = 2LM − 6M = 0 implying L = 3 or M = 0. (**) 

Hence  

• for L = 3 equation (*) gives us the branch Z[�J� = \]�;� = −M� + 4. Plotting this 

allows us to visualise the behaviour of the imaginary part of ; = <���, as can be seen in 

the diagram below by the purple parabolic curve parallel to the plane MJ at L = 3; 
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• for M = 0, equation (*) gives us the branch Z[�J� = Z[�;� = L� − 6L + 13. Plotting this 

allows us to visualise the behaviour of the real part of ; = <���, as can be seen in the 

diagram below by the red parabolic curve in the LJ plane. This function is exactly the 

same as ; = �� − 6� + 13 in the usual Cartesian frame of reference. Since Z[�;� 

happens to be function ;, the former function does not have any real roots, as seen by 

the fact that the red curve does not cross the LJ axis (this latter plane being equivalent 

to the standard �; plane in 2D). Also note that this equation can be rewritten as Z[�;� =�L − 3�� + 4, i.e. it is of the form Z[�;� = �� + 4 which is just a reflection of \]�;� =−M� + 4 about the vertex of this latter equation. 

 
The complex roots of ; = �� − 6� + 13 are then located at the intersection of \]�;� = −M� +4 and the complex plane LM, 3 units along the L axis and ±2 units in the M axis direction, either 

side of L = 3. 

 

Plots of Z[�;� = L� − 6L + 13 (in red) and \]�;� = −M� + 4 (in purple) illustrating the real 

and imaginary branches of ; = �� − 6� + 13, along with its complex roots. 

 
As a final example involving quadratics let us locate graphically the complex roots of ; =�� + 2��, this being a repeated root: Again, 0 = L + �M therefore we have 

J = <�0� = �L + �M + 2�� = L� − M� + 4L + 4 + 2��LM + 2M� = 0 . 
Equating Re and Im parts left and right of this equation we obtain,  

 Z[�J� = L� − M� + 4L + 4 = 0 [*] 

and 
 \]�J� = LM + 2M = 0 implying L = −2 or M = 0. [**] 
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Therefore  

• for L = −2 equation [*] gives us the branch Z[�J� = \]�;� = −M�. Plotting this in 3-D 

produces a parabolic curve touching the L axis at L = −2, as shown by the purple curve 

in the diagram below; 

• for M = 0, equation [*] gives us the branch Z[�J� = Z[�;� = L� + 4L + 4. Plotting this 

in 3-D produces a parabolic curve in the real plane L;, touching the L axis at L = −2, as 

shown by the red curve in the diagram below. 

 
In this case notice that the vertices of both branches touch the real axis at L = −2. The real axis 

can be said to be tangent to both curves at L = −2. 

 

  

Plots of Z[�;� = L� + 4L + 4 (in red) and \]�;� = −M� (in purple) illustrating the real and 

imaginary branches of ; = �� + 4� + 4, along with its complex roots. 

 
So what we are saying is that the roots of ; = �� + 2�� are � = −2, −2, and the roots of J =<�0� = �0 + 2�� are 0 = −2, −2, i.e. the complex root 0 is purely real (no imaginary part), and 

the graphs above illustrate the visual effect of this specific situation.  

 
The previous two examples illustrate a general feature of the graph of ; = <��� when this has 

complex roots: 

• if a quadratic has two distinct complex roots (namely, complex conjugates)  

o the real branch does not cross the L (real) axis; 
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o the complex branch will cross the complex LM plane at two distinct locations, these 

being the complex roots of ; = <���, with part of the complex branch being above the 

complex plane, and part of it being below the complex plane; 

and 

• if a quadratic has a repeated complex root  

o the real branch will be tangent to the L (real) axis, this location being the root of ; =<���; 

o the complex branch will be tangent to the L (real) axis, this location being the root of ; = <���; 

 
What these examples show us is that when ; = <��� has complex roots, function y is composed 

of two curves, called branches, one real branch Z[�J� and one imaginary branch \]�J�. These 

two branches can be plotted separately, with the imaginary branch giving us the location of the 

complex roots of ; = <��� when this branch crosses the complex plane LM (i.e. the plane 

commonly known as the Argand diagram). 

 
It is left as an exercise to answer the question, What will be the location of real and complex 

branches w.r.t. the complex LM plane if ; = <��� has real distinct roots? 

 

1.5.2 Generalising the analysis of the complex roots of a real-valued quadratic  

For the real-valued quadratic function ; = <��� = ��� + �� + � = 0, i.e. a quadratic which 

produces real values of y (not complex values) we transform ; = <��� into its equivalent 

complex valued form J = <�0� = �0� + �0 + � = 0. We now set 0 = L + �M giving us 

J = <�0� = ��L + �M�� + ��L + �M� + � = 0 , 
 = �L� − �M� + �L + � + 2���LM + �M� = 0 . 

Equating Re and Im parts left and right of this last equation we obtain,  

Z[�J� = L� − �M� + �L + � = 0 , 
and \]�J� = �LM + �M = 0 implying L = −�/� or M = 0. 

Therefore  

• for L = −�/� we have the imaginary branch \]�;� = −�M� + �. Plotting this function 

produces a parabolic curve crossing the complex plane LM or touching the L axis 

depending upon whether ; = <��� has complex roots or repeated roots.  
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The intersection of \]�;� = −�M� + � with the complex plane or the L axis gives th 

elocation of the complex roots of ; = <���. 

• for M = 0 we have the real branch Z[�;� = �L� + �L + �. Plotting this function produces 

a parabolic curve in the real plane LJ, either lying above the L axis or touching the L 

axis depending upon whether ; = <��� has complex roots or repeated roots. In the 

former case ; = <��� has no real roots, and in the latter case ; = <��� has repeated 

roots. 

 
1.5.3 Locating the complex roots of a cubic equation 

We can perform the same analysis as above to graphically locate the complex roots of cubic 

equations. 

  
Example 1: As our first example let us locate the roots of ; = <��� = �
 − 1 = 0. Recasting this 

equation in complex variable form we want to find the roots of J = <�0� = 0
 − 1 = 0. For any 

complex root 0 = L + �M we have  

J = <�0� = �L + �M�
 − 1 = 0 , 
 = L
 + 3�L�M − 3LM� − �M
 − 1 = 0 , 

which, on grouping real and imaginary parts, gives 

J = L
 − 3LM� − 1 + ��3L�M − M
� = 0 . 
Equating Re and Im parts left and right of this last equation we obtain,  

 Z[�J� = L
 − 3LM� − 1 = 0, ((*)) 

and \]�J� = 3L�M − M
 = 0 implying M = 0 or M = ±L√3 implying L = ±M/√3. 

Hence  

• for M = 0 equation ((*)) gives us the real branch of ; = <���, i.e. Z[�;� = L
 − 1, and is 

shown by the red curve in the diagrams below; 

• for L = +M/√3 equation ((*)) gives us the imaginary branch of ; = <���, i.e. \]�;� =−�8L
 + √27 /√27, and is shown by the blue curve in the diagrams below; 

• for L = −M/√3 equation ((*)) gives us the other imaginary branch of ; = <���, i.e. \]�;� = �8L
 − √27 /√27, and is shown by the purple curve in the diagrams below.  
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Note that the two branches for \]�;� can also be found from M = ±L√3. In this case we get the 

simpler looking equation \]�;� = −8L
 − 1. For ease of algebra we will, from now, find the 

imaginary branches this way.  

 
The complex roots of ��— 1 = 0 are then located at the intersection of the curves with the 

relevant axes or planes. So, for the red curve the intersection occurs on the Re axis at L = 1, 

shown as the red dot. This is the real root of ; = �
 − 1 = 0 located at � = 1. For the purple 

curve the intersection occurs on complex LM plane �L, M� = �−1/2, �3/2 , shown as the purple 

dot. This is the complex root of ; = �
 − 1 = 0 located at � = −1/2 + �√3/2.  

 
And for the blue curve the intersection occurs on complex LM plane �L, M� = �−1/2, −�3/2 , 

shown as the blue dot. This is the complex root of ; = �
 − 1 = 0 located at � = −1/2 − �√3/2. 

 
Note that all three roots lie on the circle of radius 1. This is not a coincidence, and we will cover 

this idea in more detail when we get to the section on roots of unity in part II of these notes. 
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View/perspective: 3D 

 

 

View/perspective: Looking nearly onto the v plane 

 

View/perspective: Looking directly down the w axis 

 

Plots of 78��� = �� − � and 9:��� = −��� − �  

illustrating the real and imaginary branches of � = �� − � = �,  

along with its complex roots. 
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Notice that M = +L√3 represents the plane in the direction M = W. L where W = √3. Hence \]�J� is plotted in this plane (shown in green below). Similarly M = −L√3 represents the plane 

in the direction M = −W. L where W = √3. Hence \]�J� is plotted in this plane (shown in blue 

below). 

 
 

Branch \]�;� = −8L
 − 1 

in the plane M = +L√3 

 

 
 

Branch \]�;� = −8L
 − 1 

in the plane M = −L√3 

 
It is always the case that the imaginary parts of J will be plotted in the planes specified by the M (or equivalent L) expressions. 

 

Example 2: As another example let us look at the cubic ; = �
 − � = 0. This equation has three 

real roots, so the question is what will the real and imaginary branches of this equation look 

like? As usual we recasting this equation in complex variable form as J = <�0� = 0
 − 0 = 0. 

For any complex root 0 = L + �M we have  

J = <�0� = �L + �M�
 − �L + �M� = 0 , 
 = L
 + 3�L�M − 3LM� − �M
 − L − �M = 0 , 

which, on grouping real and imaginary parts, gives 

J = L
 − 3LM� − L + ��3L�M − M
 − M� = 0 . 
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Equating Re and Im parts left and right of this last equation we obtain,  

 Z[�J� = L
 − 3LM� − L = 0, ((*)) 

and \]�J� = 3L�M − M
 − M = 0 implying M = 0 or M = ±√3L� − 1. 

Hence  

• for M = 0 equation ((*)) gives us the real branch of ; = <���, i.e. Z[�;� = L
 − L, and is 

shown by the red curve in the diagrams below; 

• for M = +√3L� − 1 equation ((*)) gives us the imaginary branch of ; = <���, i.e. \]�;� = −8L
 + 2L, and is shown by the blue curve in the diagrams below; 

• for M = −√3L� − 1 equation ((*)) gives us the other imaginary branch of ; = <���, i.e. \]�;� = −8L
 + 2L, and is shown by the green curve in the diagrams below.  

 
Now, you might think that the two equations for the \] branches should be in terms of M (the 

imaginary component of root 0) instead of being in terms of L (the real component of the 

complex root). So how can the two \] equations above represent imaginary branches? Well, 

recall the comment I made the end of the previous example for finding the roots of �
 − 1 = 0, 

namely that we get the same results either way, so I choose to solve for the variable which is 

easier to solve for algebraically. 

 
Hence the \] branches above can also be found by solving \]�;� = 3L�M − M
 − M = 0 for L. 

In this case the equations for “L = ⋯” and “\]�;�” will be different, but they will produce the 

same the complex roots and the same curves as illustrated in the graphs below. In this example 

it is much easier in terms of algebra to find the \] branches by solving \]�;� for M. It is left as 

an exercise to solve \]�;� for L and then find the equations of the respective branches.  

 
Looking at the graphs below we see that neither of the imaginary branches touches or crosses 

the comlex plane LM. Hence ; = �
 − � has no complex roots. 

 
Notice that the green and blue branches are not continuous in these graphs. To see why this is 

so, notice that ; = √3�� − 1 (the plane in which \]�;� is graphed) is real only if 3�� − 1 ≥ 0, 

i.e. only if � ≤ −1/√3 or � ≥ +1/√3. This means that for all values −1/√3 < � < +1/√3 the 

values of y is imaginary.  
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Now, remember that we are plotting curves in the 3D Cartesian system which is a region of real 

values only, so only those curves which have real values will be plotted here. If any curve has 

complex values these curves will not be seen in the graphs. So, the reason for the green curve 

stopping at the black dot on the negative side of the L axis, and starting again on the positive 

side of the L axis is because � is approaching the critical value of ±1/√3 beyond which no real 

value of ; exist. The same reasons explain why the the blue curve stops at the black dot on the 

negative side of the L axis, and starts again on the positive side of the L axis.  

 
In between the stopping and starting again of the green and the blue curves lies the space of 

complex values, and this is where the green and blue curves will be located for value of � in −1/√3 < � < +1/√3. If we visualise the whole of the 3D Cartesan systems as a cube, the region 

which the green and blue curves cannot penetrate are the whole half-cube to the right and left 

of the J axis respectively.  
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View/perspective: 3D 

 

 

View/perspective: Looking nearly down the v axis 

 

View/perspective: Looking nearly down the u axis 

 

Plots of 78��� = �� − � and 9:��� = −��� + ��  

illustrating the real and imaginary branches of � = �� − � = �,  

along with the lack of complex roots. 
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As such, these complex values cannot be represented in the Cartesian system, and is therefore 

seen as empty space for these two pairs of curves. 

 

 
 

 

 

 

Example 3: Let us go through another example. To graphially locate the roots of ; = �
 + � we 

proceed as usual: recasting this equation in complex variable form as J = <�0� = 0
 + 0 = 0. 

For any complex root 0 = L + �M we have  

J = <�0� = �L + �M�
 + �L + �M� = 0 , 
 = L
 + 3�L�M − 3LM� − �M
 + L + �M = 0 , 

which, on grouping real and imaginary parts, gives 

J = L
 − 3LM� + L + ��3L�M − M
 + M� = 0 . 
Equating Re and Im parts left and right of this last equation we obtain,  

 Z[�J� = L
 − 3LM� + L = 0, [[*]] 

and \]�J� = 3L�M − M
 + M = 0 implying M = 0 or M = ±√3L� + 1. 

Hence  

• for M = 0 equation [[*]] gives us the real branch of ; = <���, i.e. Z[�;� = L
 + L, and is 

shown by the red curve in the diagrams below; 

• for M = +√3L� + 1 equation [[*]] gives us the imaginary branch of ; = <���, i.e. \]�;� =−8L
 − 2L, and is shown by the blue curve in the diagrams below; 

• for M = −√3L� + 1 equation [[*]] gives us the other imaginary branch of ; = <���, i.e. \]�;� = −8L
 − 2L, and is shown by the green curve in the diagrams below.  
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View/perspective: 3D 

 

 

View/perspective: Looking nearly down the v axis 

 

View/perspective: Looking nearly down the u axis 

 

Plots of 78��� = �� + � and 9:��� = −��� − ��  

illustrating the real and imaginary branches of � = �� + � = �,  

along with the lack of complex roots. 
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Again, as in previous example, we could have solved \]�J� = 3L�M − M
 + M = 0 for L, and 

thus express \]�;� in terms of M (this is left as an exercise). But again, for simplicity of lagebra, 

I have solved \]�;� for M to get branches \]�;� in terms of L. 

 
Along with being able to see the real root located at 0 = 0 (equivalent to � = 0 for function ;) 

shown as the red dot in the graphs above, we can see the complex roots as being located at the 

intersection of the green and blue branches with the complex LM plane, i.e. 0 = ±�, shown as 

green and blue dots in the graphs above. 

 
Compared to the previous example, we see here that the green and blue branches are 

continuous. This is because the term 3L� + 1 in M = ±√3L� + 1 is always positive, so the 

branches based on M will always have real values. 

 

Example 4: In order to locate graphically the roots of ; = �
 + � + 10 = 0 the usual analysis 

(left as an exercise) gives use the following branches (with L and M having their usual meaning): 

• for M = 0 we obtain the real branch of ; = <��� to be Z[�;� = L
 + L + 10, as shown by 

the red curve in the diagrams below; 

• for M = +√3L� + 1 we obtain the imaginary branch of ; = <��� to be \]�;� = −8L
 −2L + 10, and is shown by the blue curve in the diagrams below; 

• for M = −√3L� + 1 we obtain the other imaginary branch of ; = <��� to be \]�;� =−8L
 − 2L + 10, and is shown by the green curve in the diagrams below. 

 

The roots can then be located visually as 0 = −2 (equivalent to � = −2 for function ;) shown 

as the red dot in the graphs below, 0 = 1 + 2� shown as the blue dot in the graphs below, and 0 = 1 − 2� shown as the green dot in the graphs below. 
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View/perspective: 3D 

 

 

View/perspective: Looking nearly down the v axis 

 

View/perspective: Looking down the u axis 

 

 

View/perspective: Looking from underneath the uv plane 
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Example 5: Let us now visualise the roots of ;��� = 2�
 + 9�� + 12� + 4 = 0. This cubic has 

three real roots: � = −0.5, and a double root at � = −2. How will the real and imaginary 

branches show themselves in this case?  

 
Again letting 0 = L + �M the usual analysis (left as an exercise) gives use the following branches: 

• for M = 0 we obtain the real branch of ; = <��� to be Z[�;� = 2L
 + 9L� + 12L + 4, as 

shown by the red curve in the diagrams below; 

• for M = +√3L� + 9L + 6 we obtain the imaginary branch of ; = <��� to be \]�;� =−16L
 − 72L� − 105L − 50, and is shown by the blue curve in the diagrams below; 

• for M = −√3L� + 9L + 6 we obtain the other imaginary branch of ; = <��� to be \]�;� = −16L
 − 72L� − 105L − 50, and is shown by the green curve in the diagrams 

below. 

 

Note, as in the example of section 1.5.1 involving a quadratic with double roots, here we have 

the imaginary branches meeting the real branch at the double root � = −2. And for the 

remaining root of � = −0.5 we again see that the imaginary branches do not touch or cross the 

complex plane LM. 
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View/perspective: 3D (slightly from the negative side of uv plane) 

 

 

View/perspective: Looking down the positive end of the v axis 

 

View/perspective: Looking nearly onto the edge of the uv plane 

 

Plots of 78��� = ��� + ��� + ��� + �  

and 9:��� = −���� − ���� − ���� − ��  

illustrating the real and imaginary branches of the cubic  � = ��� + ��� + ��� + �, 

along with the relevant complex roots and lack of complex roots. 
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One recurring theme we can see from all the work above is that of the way the real and imaginary branches behave if the roots of ; = <��� are real and 

distinct, real and equal (double roots), or complex:  

 

Complex roots only Real double roots Real distinct roots 

 
If the roots of a real polynomial ; = <��� are 

complex numbers, the real and imaginary 

branches of ; will cross the complex plane L-M, 

as shown below. 

 
 

 
If the roots of a real polynomial ; = <��� are 

real double roots, the real and imaginary 

branches of ; will touch the function <���, as 

well as touch the complex plane L-M, at the root. 

Specifically, the branches touch the Re axis of 

the complex plane, as shown below. 

 
If the roots of a real polynomial ; = <��� are 

distinct real roots, the real and imaginary 

branches of ; will not touch or cross the 

complex plane L-M, as shown below. 

 

 
 ; = �� − 6� + 13, � = 3 ± 2� 

 

 
 ; = 2�
 + 9�� + 12� + 4, � = −0.5, −2, −2 

 

 ; = 2�
 + 9�� + 12� + 4, � = −0.5, −2, −2 
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1.6 On addition and subtraction of complex numbers 

Having explained the rationale for needing complex numbers, and having defined what a 

complex number is, we now need to find out how to perform arithmetic on these numbers. Now, 

the thing about creating or defining a new mathematical object is that you then have to proceed 

systematically to explain/define how it works, how it is operated on, how it can be manipulated, 

etc. And given that the structure of a complex number is totally different to that of a real number 

(the former has two components whereas the latter has only one component) it is not 

automatically obvious how to perform arithmetic on complex numbers, if this can be done at 

all. And if it can be done, do the operations of arithmetic work in the same way on complex 

number as they do for real numbers? 

 
As an example of why this needs to be done consider showing that 1 = −1. It is straightforward 

to do this:  

 −1 = �√−1 �
 ⟹ −1 = �√−1 �√−1  ⟹ −1 = ��−1��−1� 

⟹ −1 = √1 ⟹ −1 = 1   

 
But this is obviously not true, and we now meet the first of many aspects of complex numbers 

where the application of arithmetic is not always the same on complex numbers as it is on real 

numbers. This also applies even more so to functions of a complex variable <�0� compared to 

function of a real variable <���, differentiation of <�0� compared to differentiation of <���, 

integration of <�0� compared to integration of <���, etc. 

 
Given that the number i is a completely new kind of mathematical object, we have to start right 

from the beginning to define the operations of addition, subtraction, multiplication, and 

division of complex numbers (formally speaking we would even have to define what it means 

for two complex numbers to be equal to each other, but we will accept this as obvious).  

 

1.6.1 Addition and subtraction of complex numbers 

How do we add two real numbers? Well, we just add them, i.e. 1 + 2 = 3. Furthermore, we know 

that addition of real numbers is commutative, i.e. 1 + 2 = 3, and also 2 + 1 = 3. But given that a 

complex number is expressed as a + ib, the question is now, How do we go about adding two 

numbers of this type, and will the process of addition be commutative? 
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The answer to these questions is as follows: given two complex numbers 0= = � + �� and 0� =� + �n then  

0= + 0� = �� + ��� + �� + �n� = �� + �� + ��� + n� . 
In other words we simply add the respective real and imaginary parts. For example, (2 + i) + 

(−5 − 4i) = −3 − 3i. Then, since we know real number addition is commutative we can write 

0= + 0� = �� + �� + ��n + �� = �� + �n� + �� + ��� = 0� + 0= . 
Hence addition of complex numbers is commutative. The process of subtraction of two complex 

numbers is defined in the same way: 

0= − 0� = �� + ��� − �� + �n� = �� + �� − ��� + n� . 
 
For example, i) �2 + �� + �4 − 2�� = 6 − �, ii) −3 − �−1 + 6�� = −2 − 6� (notice that in this last 

example � = 0). 

 
Theoretically we could define addition and subtraction in any way we wished to. But the 

question would then be as to how useful any such definition would be. This means that 

definitions are not (totally) arbitrary, but suffice to provide a way of manipulating new 

mathematical objects consistently with all previously developed mathematics.  

 
So this way of defining addition and subtraction of two complex numbers allows us to develop 

a consistent mathematics, and allows us to extend the idea of addition and subtraction for real 

numbers.  

 
For example, given that real numbers can now be written as complex numbers where the 

imaginary part is 0, we can express the addition of 1 and 2 as follows:  

 1 + 2 = �1 + 0�� + �2 + 0�� 

 = �1 + 2� + ��0 + 0� 

 = 3 + 0� 

 = 3 

 
which is the same answer we get when doing 1 + 2 in ℝ.  
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1.6.2 The geometric effect of addition/subtraction on complex numbers 

Addition of complex numbers can also be intepreted geometrically. For example, let 0= = 1 + � 

what is the effect on 0= of the following: 0� = 0= + 2, and 0
 = 0= − 2? Well, plotting 0=, 0�, and 0
 we have the graphs below: 

 

From this we see that adding 2 to 0= translates 0= by two unit to the right, and subtracting 2 

from 0= translates 0= by 2 unit to the left. In general it is the case that, given 0 = � + ��, then 0 ± W, where k is a real number, has the effect of translating/shifting z respectively to the right 

or left by k units. 

 
What if we add multiples of i to 0=? Let us see the effect of doing 0� = 0= + � and 0
 = 0= − �: 

 

In this case we see that the effect of adding ±� to 0= is to translate 0= respectively up and down 

by 1 unit. In general, it is the case that, given 0 = � + ��, then 0 ± W�, where k is a real number, 

has the effect of translating z vertically (i.e. up or down) by k units.  
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Let us now study the geometric effect of adding/subtracting one complex to/from another 

complex number. For example, we can plot 2 + � and 1 + 3� on an Argand diagram. Plotting the 

sum  �2 + �� + �1 + 3�� = 3 + 4� shows us that addition of two complex numbers is the same 

as addition of vector, and can be done via the parallelogram law: 

 

This also show us that addition of complex numbers is commutative, i.e. 0= + 0� = 0� + 0=. It  is 

important to know this since we cannot assume that anything about the arithmetic of real 

numbers transfers to the arithmetic of complex numbers.  

 
In general, given 0= = � + �� and 0� = � + �n we therefore have  

0= ± 0� = �� + ��� ± �� + �n� , 
 = �� ± �� + ��� ± n� , 
 = �� ± �� + ��n ± �� , 
 = �� + �n� ± �� + ��� , 
 = 0� ± 0= . 

 
 
The same parallelogram law effect applies for subtraction. For example, if 0= = 2 + � and 0� =1 + 3� then 0� − 0= = −1 + 2� and 0= − 0� = 1 − 2� as shown below: 
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 0= − 0� = 1 − 2� 0� − 0= = −1 + 2� 

 
And we therefore see, both geometrically and algebraically, that subtraction is not 

commutative. 

 
Below is an all-in-one diagram representing the geometric effect of the three operations of 

conjugation, addition, and subtraction on two complex numbers 0 and J. 

 

 

Exercsies  

1) Given 0 = −2 what is the effect of J = 0 + 3�? 

2) Given 0 = −1 + 2� and J = 4 − �, what is the effect of 0 + J∗ and |J − 0∗|? 

3) Given a complex number 0 what is the effect on z of 0 + 4 − 2�? 
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1.7 On Multiplication of complex numbers 

1.7.1 Multiplying two complex numbers 

How do we multiply two real numbers ? We just multiply them. For example 2×3 = 6. 

Furthermore, we know that multiplication of real numbers is commutative, i.e. 2×3 = 6, and also 

3×2 = 6. But given that a complex number is expressed as a + ib, the question is now, How do 

we go about multiplying two numbers of this type, and will the process of multiplication be 

commutative? We also know that the real factors of 4 are 1, 2, 4. Is it possible for numbers such 

as 1 + �√3 or 1 − �√3 be factors of 4?  

 
To answer these questions we need to define what it means to multiply two complex numbers. 

As such, consider two complex numbers 0= = � + �� and 0� = � + �n. We define the product 0=0� to be 0=0� = �� + ����� + �n� = �� + ��n + ��� + ���n . 
In other words we define multiplicaion as a simple expansion of two binomial terms. But since �� = −1 the term ���n = −�n, and we can therefore simplify the above to  

0=0� = ��� − �n� + ���n + ��� . 
Notice that the real part of 0=0� is not just ac but ac – bd, with ad + bc being the imaginary part. 

As an example, (2 + i)(−5 − 4i) = −10 − 8i − 5i − 4i2 = −6 − 13i.  

 
Also, since we know real number addition and multiplication is commutative we can write 

0=0� = �� + ��� + �n� + ��n� = �� + �n��� + ��� = 0�0= . 
Hence multiplication of complex numbers is commutative. For example, �−5 − 4���2 + �� =−10 − 5� − 8� − 4�� = −6 − 13�, exactly as in the previous example. 

 

Know that we know about addition and multiplication, a new question which we can ask is, Is 

multiplication distributitve across addion? In other words, given three complex numbers 0=, 0�, 0
 is it the case that 0=�0� + 0
� = 0=0� + 0=0
? The answer is yes, and it is left as an exercise to 

show this in the general case. 

 
Examples  

1) Some basic examples of multiplication of complex numbers are as follows:  

• ��5 − 7�� = 5� − 7�� = 7 + 5�, since �� = −1; 

• ��4 − �� + 4��1 + 2�� = 4� − �� + 4� + 8�� = 8� + 7�� = −7 + 8�, since �� = −1; 
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• �1 + ���1 − 2�� = 1 − 2� + � − 2�� = 3 − �, since �� = −1; 

• �1 + ����1 − ��
 = �1 + 2� − ����1 − 3� + 3�� − �
� = 2��−2 − 2�� = 4 − 4�. 

 

2) If 0= = 1 − �, 0� = −2 + 4� and 0
 = √3 − 2� then we can find Z[�20=
 + 30�� − 50
�� as 

follows:  

• 20=
 = 2�1 − ��
 = 2�1 − � + �� − �
� = 2�1 − � − 1 + �� = 0; 

• 30�� = 3�−2 + 4��� = 3�4 − 16� + 16��� = 3�−12 − 16��; 

• 50
� = 5�√3 − 2� � = 5�3 − 4�√3 + 4�� = 5�−1 − 4�√3 . 

 Therefore  

Z[�20=
 + 30�� − 50
�� = 0 − 36 − 48� + 5 + 20�√3 = −31 + ��20√3 − 48  . 
 

3) If 0 = � + �; what is Z[�0��, \]�|0|�, \]�0̅� + 0�� 

 Solution: Given 0 = � + �; then 

• 0� = �� + �;�� = �� + 2��; − ;�, therefore Z[�0�� = �� − ;�; 

• |0| = ��� + ;�, therefore \]�|0|� = 0; 

• 0̅� = �� − ;� − 2��;, hence 0̅� + 0� = ��� − ;� − 2��;� + ��� − ;� + 2��;� = 2��� −;��. Therefore \]�0̅� + 0�� = 0; 

• Exercise: What is \]�0̅� − 0�� and Z[�0̅� + 0��? 

 

4) Show that Z[�0=0�� = Z[�0=�Z[�0�� − \]�0=�\]�0��. 

 Solution  

 Let 0= = �= + �;= and 0� = �� + �;�. Then 0=0� = �=�� + ���=;� + ��;=� + ��;=;�. So the 

real part is Z[�0=0�� = �=�� − ;=;�.  

 But Z[�0=�Z[�0�� = �=�� and \]�0=�\]�0�� = ;=;� so Z[�0=�Z[�0�� − \]�0=�\]�0�� =�=�� − ;=;� = Z[�0=0��. 

 
 Exercise: Show that \]�0=0�� = Z[�0=�\]�0�� + \]�0=�Z[�0��.  
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5) We have not yet studied how to take square roots of a complex number so how would we 

show that  

√1 + � = �=� + =� √2 + ��− =� + =� √2 ? 

 Solution: Squaring both sides should show that the RHS is 1 + �. Hence  

+O12 + 12 √2 + �O− 12 + 12 √2.
�

 = +O12 + 12 √2.
�

− +O− 12 + 12 √2.
�

 

  +2� +O12 + 12 √2. +O− 12 + 12 √2. , 

 = e12 + 12 √2f − e− 12 + 12 √2f + 2� +O14. 

 = 1 + � . 
 

6) Given two complex numbers 0= and 0�, where 0= ≠ 0�, we want to prove 0=0� is a real 

number if and only if 0� = W0=c , for some real number k. 

 Solution  

 The term “if and only if” means that we have to prove the result in two “directions”, in other 

words we need to prove that i) 0=0� is a real implies 0� = W0=c  for some real number W, and 

ii) 0� = W0=c  for some real number W implies 0=0� is a real. 

 
 We shall prove ii) first: Let 0= = �= + �;= and 0� = �� + �;�. We use the fact that 0� = W0=c  

to show that 0=0� is real: 

0=0� = 0=�W0=c � , 
 = W��= + �;=���= − �;=� , 
 = W��=� + ;=�� , 

 which is indeed real. 

 
 We now prove i). In this case we need to derive 0� = W0=c  from  0=0�. Hence  

0=0� = ��= + �;=���� + �;�� = �=�� − ;=;� + ���=;� + ��;=�. 
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 If 0=0� is real then \]�0=0�� = �=;� + ��;= = 0, implying ��/�= = −;�/;=. Therefore, 

substituting �� = −�=;�/;= into 0=0� we obtain 

0=0� = �= e− �=;�;= f − ;=;� + ��0� , 
 = − �=�;� + ;=�;�;=  , 
 = − ;�;= ��=� + ;=�� , 
 = W�0=. 0=c � , 

where W = −;�/;= is a real number. Hence we have 0=0� = 0=�W. 0=c � implying 0� = W0=c . ∎ 

 

Theoretically we could define multiplication in any way we wished to. But as previously 

mentioned the question would then be as to how useful any such definition would be. This 

means that definitions are not (totally) arbitrary, but suffice to provide a way of manipulating 

new mathematical objects consistently with all previously developed mathematics.  

 
So this way of defining multiplication of two complex numbers allows us to develop a consistent 

mathematics, and allows us to extend the idea of multiplication for real numbers. Since real 

numbers can now be written as complex numbers where the imaginary part is 0 we have, for 

example, the following  

1 × 2 = �1 + 0���2 + 0�� 

 = 1 × 2 + 1 × 0� + 2 × 0� + 0 × 0�� 

 = 2 + 0� 

 = 2 

 
So the way of defining multiplication of complex numbers preserves the property of 

multiplication of real numbers. 

 
It is important to understand why we need to define how arithmetic works on complex 

numbers. Since complex numbers are totally different types of numbers compared to ral 

numbers we cannot assume that any arithmetic on real numbers will work the same for 

complex numbers (go back and see what happened when we “proved” 1 = −1 at the beginning 

of section 1.6).  
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For example, consider two real numbers � and ;. Then ;
 = �
 implies ; = �. Is this also true 

for complex numbers? Let us test this with �1 + �√3 

. In this case we have �1 + �√3 
 = �−2�
. 

But it is clear now that 1 + �√3 ≠ −2. And even if, by some miracle this last equation were true 

(and we will see much later in the section on the exponential form of a complex number that 

weird and “impossible” answers such as �� ≈ 0.20788 are possible) we would have 1 + �√3 =−2 implying � = −√3 or �� = 3, which contradicts the definition �� = −1. 

 
1.7.2 The geometric effect of multiplication on complex numbers 

The effect of multiplication of a complex numbers by another complex number can also be 

interpreted geometrically. Before we get to this let us firstly consider multiplying a complex 

number by a real number. For example, if we have 0= = −3 + �, then the effect of doing 0� =2. 0= = 2�−3 + �� = −6 + 2� is to stretch 0= by a factor of 2. If we multiply 0= by −½ we get 0
 =−0.50= = −0.5�−3 + �� = 1.5 − 0.5� which is a squeezing of 0= by a factor of ½, pointing in the 

opposite direction to 0=. 

 

We therefore see that the geometric effect of this is to simply stretch or squeeze our complex 

number. That’s it. There is no more to it. 

 
Let us now look at the effect of multiplying 0= = 1 by i. Performing the multiplication gives 0� =�. 0= = �, which can be represented graphically as seen below: 
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So the effect of multiplying 0= by i is to rotate 0= by 6/2. If we repeat this by multiplying 0� by i 

to get 0
, and then by multiplying 0
 by i to get 0H, and then by multiplying 0H by i to get 0R we 

have the following: 

0
 = �. 0� = �. � = �� = −1 

0H = �. 0
 = ��−1� = −� 

0R = �. 0H = ��−�� = −�� = 1 

all of which can be represented graphically below: 

 

The effect of rotating by 6/2 is true generally: if we multiply any complex number z by i the 

number z gets rotated by 6/2. For example, if 0= = 4 + 2� is multiplied by i we get 0� = �0= =��4 + 2�� = −2 + 4�. Multiplying again by I we get 0
 = �. 0� = ��−2 + 4�� = −4 − 2�. 

Multiplying again by i we get 0H = �. 0
 = ��−4 − 2�� = 2 − 4�, etc. As can be seen from the 

graph below, each time we multiply by i we rotate the given complex number z by 6/2. 
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We have seen how multiplying a complex number z by i has the effect of rotating z by 6/2, more 

specifically z is rotated anticlockwise by 6/2. What then will be the effect of multiplying z by −� 

? Here the effect will be to rotate z by 6/2 in a clockwise direction. Successively multiplying z 

by −� will then have the effect of successively rotating z by 6/2 in a clockwise direction. 

 
So in summary we can say that  

• Multiplying any complex number z by �, ��, �
, �H has the effect of rotating z by 6/2, 6, 36/2, and 26 respectively, i.e. an anticlockwise rotation; 

• Multiplying any complex number z by −�, −��, −�
, −�H has the effect of rotating z by −6/2, −6, −36/2, and −26 respectively, i.e. a clockwise rotation; 

 
We are now in a position to describe the geometric effect of multiplying any arbitrary complex 

number 0= by any other arbitrary complex number 0�. To illustrate this let us look at multiplying 0= = 1 + � by 0� = 3 + �. Algebraically we obtain 0�0= = �3 + ���1 + �� = 2 + 4�, illustrated 

graphically as below: 
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How are we going to interpret the geometric effect of this multiplication? Well, briefly we can 

see that multiplying 0= by 0� has rotated 0= as well as stretched it. Informally, this can be 

explained as follows: create a right-triangle with �0=as hypotenuse, and a right-triangle with �0� as hypotenuse. Then rotate the 0= triangle so that its base lies on the hypotenuse of 0�. Then 

stretch the 0= triangle until its base meets 0�. The vertex of this new rotated and stretched 

triangle is the product 0�0=. 

 

 

 The triangle formed by 0= The triangle formed by 0� 

 

 

 

 Rotating the 0= triangle so that its Scaling the rotated triangle 0=  

 base lies on the hypotenuse of 0� so that its base meet 0� 
 
 
We know need to know how/why this works. To help us in this we will refer to the diagram 

below, along with the fact that 0�0= = �3 + ���1 + �� = 3�1 + �� + ��1 + ��.  
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What this tells us is that we scale 0= by a factor of 3 and seperately rotate 0= by 90° and scale 

this by a factor of 1. We then add (in the sense of vector addition) both of these transformations. 

 

 Scaling 0= and scaling a rotated 0= Adding the scaled and rotated components 

 

This combination of stretching and rotating gives us 0�0=. The rotation effect is such as to add 

the angle 0� makes with the Re axis with the angle 0= makes with the Re axis. Also, since we are 

scaling up 0= by the amount 0�, the length of 0�0= is simply the product of the lengths of 0= and 0�.  

 
The effect of addition of angles and multiplication of lengths can be seen by the fact that triangle 

OAB, arrived at by the vector addition of the Re and Im components of 0�0=, viz, 

0�0= = �3 + ���1 + �� = �3 × 1 + 3 × �� + �� × 1 + � × �� , 
(illustrated below) is similar to the right-triangle formed by 0�.  
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1.7.3 The effect of continual multiplication by a complex number 

Consider the complex number such that |0| = 1. What is the geometric effect of performing 0C 

when n is a positive integer? To answer this let us locate 0 on a unit circle, as shown below. 

 

Since |0| = 1 the line from the centre to point z has length 1. Therefore, the triangle formed 

from �0, 0� to �1, 0� to z will be isosceles, with two sides being of length 1. These two sides are 

effectively the base and the hypotenuse of the triangle.  

 
Recall that multiplication of two complex numbers z= and 0� involves placing the base of 

triangle of 0= onto the hypotenuse of triangle 0�, and then stretching the base of 0= to match the 

length of 0�. In the case of 0� we place the base of the triangle formed by 0 onto the hypotenuse 

of the triangle formed by 0. Since both of these sides are of length 1 no stretching is required. 

Therefore the effect of multiplying 0 by 0, i.e. performing 0�, is simply to rotate z. 

 
So when we take a complex number z, such that |z| = 1, and integer-power it up, i.e. square it, 

cube it, fourth power it, etc., , the result will be seen to rotate z but to not stretch it: 
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As an example consider 0 = 0.8 + 0.6�. here we have |0| = 1. Integer-powering z we obtain the 

following up to power 6: 

0� = 0.28 + 0.96i 0
 = −0.352 + 0.936i 0H = −0.8432 + 0.5376i 
0R = −0.99712 − 0.07584i 0S = −0.752192 − 0.658944i  

 
etc. It seems as if the integer powers of 0 follow the path of the circumference of the unit circle, 

and this is indeed the case, and is illustrated below. This can be shown simply by finding the 

equation which satisfies |0| = 1 (this is left as an exercise). 

 

Examples such as that above will be studies in more detail in Complex Number II under the 

section titled loci. In the case of the example above the geometric effect of integer powers of 0 

can informally be called the power circle.  

 
An interesting question to ask is, What path do integer powers of 0 follow if |0| ≷ 1? Well, if |0| > 1 the path is a spiral lying outside the unit circle, with the spiral becoming more and more 

open the greater the modulus of z. If |0| > 1 the path is a spiral lying inside the unit circle, with 

the spiral becoming more and more closed the less the modulus of z.  

 
This is illustrated below for 0 = 0.69 + 0.52� (|0| < 1) and for 0 = 0.94 + 0.44� (|0| > 1), where 

the sequence of red dots after z represent the powering of z from 2 to 8. Such a path might 

informally be called a power spiral. A summary of the modulus and arguments (in radians) of 

each power of z is shown in the table below: 
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Complex number  0 = 0.69 � 0.52� 
|2¡| ¢£¤�2¡� 

Complex number  0 � 0.94 � 0.44� |2¡| ¢£¤�2¡� 

0 0.864 0.646 0 1.038 0.438 

0� 0.747 1.292 0� 1.077 0.876 

0
 0.645 1.937 0
 1.118 1.313 

0H 0.557 2.58 0H 1.16 1.751 

0R 0.482 3.23 0R 1.204 2.189 

0S 0.416 3.87 0S 1.25 2.627 

Each higher power is 0.646 radians further 

along anticlockwise, and closer to 0 in 

length. 

Each higher power is 0.438 radians further 

along anticlockwise, and further away 

from 0 in length. 

 

 

  

A power spiral for 0C where |0| B 1 A power spiral for 0C where |0| Q 1 
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1.7.4 Finding the square root of a complex number 

We now have enough development in complex numbers to find the square root of a complex 

number.  

 
Example 1 

Suppose we have 0 � 5 + 12� and we now want to find √0. We can do this as follows: 

√5 + 12� = � + �� . 
Squaring both sides gives 5 + 12� � �� � ���� , 

 � ��� − ��� � ��2��� . 
We now compare Re and Im coefficients to get 

 5 = �� − �� ,   (8) 

and 12 = 2�� implying 6 = �� . (9) 

 
Substituting (9) into (8) we obtain 

5 = �� − e6�f� , 
which simplifes to 

 �H − 5�� − 36 = 0 . (10) 

Using the quadratic formula on (10) we get 

�� � 5 ± √25 + 4 × 362 = 5 ± √1692  . 
However, 5 − √169 < 0, i.e. �� is negative, leading to a being complex. But a is a real number 

so the negative square root case is not valid. Therefore 

�� � 5 + √1692 = 9 , 
implying 

 � � ±3 , (11) 

 � � ±2 . (12) 

But by (9) we know that a.b is positive, so a and b must have the same sign, either �, � Q 0 or �, � B 0. Therefore � � 3 and � � 2, or � � −3 or � � −2, and the two roots of 5 + 12� are 3 �2� and −3 − 2�.  
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Suppose, on the other hand that we want to find the square root of 5 − 12�. The majority of the 

steps in solving this are the same as above except that (9) now becomes 

 −6 = �� implying − 6� = � (13) 

 
This again leads to �H − 5�� − 36 = 0, and ultimately to � � ±3 and � � ±2. However, by the 

left hand expression in (1311) we know that a.b is negative, so a and b must have opposite signs, 

either � Q 0 and � B 0, or vice-versa Therefore � � −3 and � � 2, or � � 3 or � � −2, and the 

two roots of 5 − 12� are −3 � 2� and 3 − 2�. 

 

Example 2 

Finding the square root of 0 � 9 + 4� we have: 

√9 + 4� = � + �� . 
Squaring both sides gives 9 + 4� � �� � ���� , 

 � ��� − ��� � ��2��� . 
We now compare Re and Im coefficients to get 

 9 = �� − �� ,   (14) 

and 4 = 2�� implying 2 = �� . (15) 

 

We could now substitute (15) into (14) for b, but let us do something else instead. Let us create 

a third equation, which will end up making our subsequent algebra easier. This third equation 

is based on the modulus of 0. In other words, since √9 + 4� = � + ��, we have 9 + 4� =�� + ���� = ��� − ��� + ��2���. Taking the modulus of both sides gives 

√9� + 4� = ���� − ���� + �2����  implying √97 = �� + �� (16) 

 
We can now add (14) and (16) and take the square root to obtain  

� � ±O12 �9 + √97  , 
whence we can find b from to be 

� � ±2O 29 + √97 . 
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Again note that by (15) the signs of a and b have to be the same, so we have the roots of 9 + 4� 

to be 

0= � O12 �9 + √97 + 2�O 29 + √97 and 0� � −O12 �9 + √97 − 2�O 29 + √97  . 
 

We can generalise the above examples as follows: the number �� � �; is a complex number � � �� such that � � �; � �� � ����. Hence  

� � �; � �� � ���� , 
 � ��� − ��� � ��2��� . 

Comparing Re and Im coefficients we get 

 � � �� − �� ,   (17) 

and ; � 2�� implying 
;2� = � , (18) 

 

from which we obtain 

� � �� − ¥ ;2�¦� , 
which simplifes to 

 4�H − 4��� − ;� = 0 . (19) 

Using the quadratic formula on we obtain  

�� � 4� ± �16�� + 16;�8 = � ± ��� + ;�2  . 
However, ��� � ;� ≥ �, so in general � − ��� � ;� will be negative, i.e. �� is negative leading 

to a being complex. But a is a real number so the negative square root case is not valid. 

Therefore 

�� � � � ��� � ;�2  , 
Substituting this back into ; � 2�� we obtain 

�� � −� � ��� � ;�2  , 
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hence  

 � � ±O� � ��� � ;�2  , � � ±O−� � ��� � ;�2  .  

 

But we know that if ; � 2�� is positive then a and b must have the same sign, and if ; � 2�� is 

negative then a and b must have opposite signs. Therefore,  

� ≥ 0 implies �� � �; � ± +O� � ��� � ;�2 + �O−� + ��� + ;�2 . , 

� B 0 implies �� � �; � ± +O� � ��� � ;�2 − �O−� + ��� + ;�2 . . 
 

1.8 On division of complex numbers 

1.8.1 The division of two complex numbers 

How do we divide two real numbers ? We just divide them. For example 7÷2 = 3.5. Let us look 

more closely at the fraction 7/2. We know that one way to interpret this fraction is by saying 

that we are looking to find how many 2s go into 7. And by repeated subtraction we find that 

there are three 2s, with 1 left over. So  72 = 3 12 . 
By rewriting ½ as 10×0.1/2 we can continue this process and ask how many 2s go into 10 

tenths, from which we find there to be 5 tenths. Hence, we then end up with  

72 = 3.5 

All of this is basically a process of repeated subtraction. 

 
But given that a complex number is expressed as a + ib, the question is now, How do we go 

about dividing two numbers of this type? For example, what is the answer to �2 + �� ÷ �3 + 2��? 

What does it mean to ask, How many “3 � 2�”s go into 2 + �? Well, it doesn’t mean anything. 

The concept of “how many … go into …?” is really a concept of magnitude (applying only to real 

numbers), and complex numbers are not magnitudes but vector-like objects. A real number is 

a magnitude type of object whereas a complex number is a magnitude-and-direction type of 

object. So how are we going to divide a number which has magnitude and direction? 
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To answer this let us return to our real number fraction 7/2, and consider an alternative way 

to performing the division. If this division is possible then it will be some answer m. This means 

we can write 72 = ] . 
Hence we have 7 � 2] . 
All we then need to do is to find a number m such that, when multiplied by 2, we obtain the 

answer 7. This idea of converting a division problem into an equivalent multiplication problem 

is what we can do for complex numbers.  

 
Since we have already defined multiplication of complex numbers we can apply the idea of 

“multiplying in order to divide” to the division of complex numbers: �2 + �� ÷ �3 + 2�� must 

give some answer in the form � � �;. Hence  

 
2 + �3 + 2� = � + �; ⟹ 2 + � = �3 + 2���� + �;� . (*) 

 
There are two ways to solve this problem. The first, most obvious way is to expand the RHS and 

then compare real and imaginary parts. This will require us to solve simulataneous equations. 

Hence  2 + � = 3� − 2; + ��2� + 3;� , 
 
from which we have 2 = 3� − 2; and 1 = 2� + 3;. Solving this gives � � 8/13 and ; � −1/13. 

Therefore  2 + �3 + 2� = 8 − �13  . 
 
The other, not so obvious way is to multiply both sides of (*) by the conjugate of 3 � 2�. Hence   

 
 �2 + ���3 − 2�� � �3 � 2���3 − 2���� + �;� , (**) 

 
 8 − � � 13�� + �;� ,  

 
⟹ 

8 − �13  � � � �; .  
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This procedure is much faster than the previous one mainly because, in multiplying by the 

conjugate, we have returned a real number as a factor on the RHS (note that multiplying by 

conjugates is always a useful tool when wanting to simplify problems). Now notice that (**) can 

be rewritten as a proper division problem: 

2 + �3 + 2� × 3 − 2�3 − 2� = � + �; , 
and this is now how we perform the division of two complex numbers. In other words, given 0= 

and 0� we can perform 0=/0� by multiplying top and bottom of the fraction by the conjugate of 0�, i.e. 0=0� � 0=0� . 0�∗0�∗ 

 
Let us now redo our division according to new approach. Hence  

0=0� � 
2 + �3 + 2� , 

 � 
2 + �3 + 2� × 3 − 2�3 − 2� . 

 � 
6 − 4� + 3� − 2��9 − 6� + 6� − 4�� , 

 � 
8 − �13  . 

 
So in general, if 0= � � � �� and 0� � � � �n we have  

0=0� � 
� � ��� � �n , 

 � 
� � ��� � �n × � − �n� − �n , 

 � 
�� � �n�� � n� � � �� − �n�� � n�  . 

 

Multiplying any rational/fractional complex number by the conjugate of the denominator will 

always result in the denominator being real.  
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Example 1: Suppose we want to evaluate  

0 � 2 − 4�3 + �  . 
We then proceed as follows: 

0 � 
2 − 4�3 + � = 2 − 4�3 + � × 3 − �3 − � , 

 � 
�2 − 4���3 − ���3 + ���3 − �� = 2 − 14�4  , 

 � 
12 − 7� . 

Exercise: If 0 � � � �; show that 1/0 = 0∗/|0|. 
 

Example 2: If  we want to evaluate  

0 � �5 − �� − �3 + 7���4 + 2�� + �2 − 3�� , 
we proceed as follows: 

0 � 
�5 − �� − �3 + 7���4 + 2�� + �2 − 3�� , 

 � 
−2 − 8�6 − �  , 

 � 
−2 − 8�6 − � × 6 + �6 + � = �−2 − 8���6 + ���6 − ���6 + ��  , 

 � 
−4 − 50�7  . 

 

Example 3: To evaluate J � 2�S − �2/��
 + 5�DR − 12� we use the standard properties of ��, �H, etc. Hence we have J � 2�H�� − 8/�
 + 5/�R − 12� = −2 − 8/����� + 5/��H�� − 12�. Recall 

that 1/� = −� we now obtain J � −2 − 8� − 5� − 12� = −2 − 25�. 

 
Example 4: To find the real and imaginary part of  

0 � 1�1 + ���1 − 2�� , 
we proceed as follows: 



82 

 

0 � 
1�1 + ���1 − 2�� , 

 � 
13 − � = 13 − � × 3 + �3 + � , 

 � 
3 � �10  . 

 
Hence Z[�0� � 3/10 and \]�0� � 1/10. 

 
Example 5: If 0 � � � �; what is Z[�1/0�? 

Solution:  10 � 
1� + �; , 

 � 
1� + �; × � − �;� − �; , 

 � 
� − �;�� − ;� . 

Hence Z[�1/0� = �/��� − ;��. 

Example 6: Given that 0 � � � �; one way we can solve  

0 � 20∗ = 2 − �1 + 3� , 
Is as follows: 0 � 20∗ = � + �; + 2� − 2�; = 3� − �;. Hence we have  

3� − �; � 
2 − �1 + 3� , 

 � 
2 − �1 + 3� × 1 − 3�1 − 3� , 

 � 
−1 − 7�10  . 

Comparing Re and Im parts we have � � −1/30 and ; � 7/10. 

Exercise: Solve 0/�1 + 0∗� = 3 + 4�.  
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Example 7: Note that  

 
1�1 + ��� + 1�1 − ��� = 12� − 12� = 0 . {*} 

Now note that  1�1 + ��H + 1�1 − ��H = e 12�f� + e− 12�f� = 14�� + 14�� = − 12 . 
 
However, if we separately square the terms in {*} we obtain  

1�1 + ��H + 1�1 − ��H = e 12�f� − e 12�f� = 0  
which is the wrong answer. To see why we must consider the original rational expression 

carefully 1�1 + ��H + 1�1 − ��H = 1>�1 + ���?� + 1>�1 + ���?� = e 12�f� + e− 12�f�, 
noticing in general that −���� ≠ �−���. 
 

Example 8: If 0 � � � �; and  |0 − 3||0 � 3| � 2 , 
 
show that this gives to the equation of a circle centre �−5, 0�, radius 4. 

Solution:  

|0 − 3| � |� − 3 � �;| � ��� − 3�� � ;�, and |0 � 3| �  |� � 3 � �;| � ��� � 3�� � ;�. Hence  

|0 − 3||0 � 3| � 2 

implies  ��� − 3�� � ;� � 2��� + 3�� + ;� , 
from which  �� − 3�� � ;� � 4�� + 3�� + ;� . 
Expanding and simplifying we obtain �� � ;� � 10� + 9 = 0. Completing the square we end up 

with �� � 5�� − 25 + ;� + 9 = 0 implying �� � 5�� + ;� = 16. This is the equation of a circle 

centre �−5, 0�, radius 4. Also, knowing that |0| is given by ��� � ;� we can express the equation 

of the circle as |0 � 5| = 4. 
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Example 9: Let 0 � � � �;. Express |0 − 1 − 3�|� = 4 and |0 � 0∗| � 1 in terms of x and y. 

Describe the geometric meaning of these expressions. 

 
Solution 

For the first expression we have |0 − 1 − 3�|� = |� + �; − 1 − 3�|� = 4. Hence |�� − 1� +��; − 3�|� = 4. Since the modulus involves a square root which we are then going to square we 

end up with |0 − 1 − 3�|� = �� − 1�� + �; − 3�� = 4. This represents a circle of centre �1, 3� 

and radius 2. 

 
For the second expression we have |0 � 0∗| � |� � �; � �� − �;�| � |2�| = 2� = 1. Hence � �1/2 and this represents the vertical line through x = ½.  

 

1.8.2 The geometric effect of division on complex numbers 

How are we going to interpret the geometric effect of this division? Well, as with multiplication, 

the division of 0= by 0� will rotated and scale 0=. Then, if the process of multiplication makes 0= 

rotate towards and beyond 0� then it seems logical to assume that the process of division will 

make 0= rotate away from 0�. Similarly if the process of multiplication generally results in 0= 

being stretched then the process of division will generally result in 0= shrinking. This is indeed 

the case, and we now need to know the extent of this rotation and scaling.  

 
To do this let us view division as a multiplication-by-conjugate. Remember that, in performing 0 � �2 + ��/�3 + 2��, which we do 

0 � 2 + �3 + 2� × 3 − 2�3 − 2� . 
Let us now look at this as 0 � �2 + ���3 − 2���3 + 2���3 − 2�� , 
and consider the effect of the numerator and denominator separatetly. Looking at the 

denominator first, we know that the product of conjugates gives us a real number, say m. So 

what we are really doing is scaling the numerator by 1/m. 

 
We are therefore left with understanding the geometric effect of multiplying �2 + �� by �3 − 2��, 

which is the conjugate of the divisor. To understand this effect we will use the same approach 

as we used in multiplication, but with one important change, namely we will rotate the triangle 

formed from 0= so that its base meets the line to the conjugate of 0�.  
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Therefore, let us consider the geometric effect of dividing 0= � 2 + � by 0� � 1 + 3�. Our process 

will therefore be: i) rotate the triangle formed by 0= so that its base lies on the line to  0�mmmm; ii) 

shrink the base of the rotated 0= triangle by the amount given by the hypotenuse of the  0�mmmm 

triangle, as illustrated below: 

 

 The triangle formed by 0= The triangle formed by the conjugate of 0�c  

 

 

 Alligining the base of the 0= triangle Shrinking the base of the  

 to the hypotenuse of 0�c  alligned 0= triangle by a factor of 0�c  
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In this case it is difficult to see visually the extent to which the base of triangle 0= should be 

shrunk, but the algebra of division determines this for us. The above can be shown to be the 

case by considering the components of the arithmetic of division, as was illustrated for the case 

of multiplication in section 1.7.2. This is left as an exercise. 

 
The geometric effect of division of complex numbers can then be summarised as follows:  

given 0=/0� we rotate the complex number 0=0� by ±6/2 radians, 

and then scale this by a factor given by 0�. 0�c  

 
Exercise: Let 0 � � � ��. What is the geometric relationship between 0 and 0D=? 

 

1.9 On the ordering of complex numbers 

The following is adapted from “Ordering complex numbers… Not”, David Angell, Parabola, 

Volume 43, Issue 2 (2007) hosted at the University of New South Wales, and from “A new 

approach to ordering complex numbers”, D. K. Yadav, International Journal of Math. Sci. & Engg. 

Appls. (IJMSEA), Vol. 2 No. III (2008), pp. 211-223. 

 
1.9.1 Some attempts to order complex numbers, and why they fail 

As we know, the real numbers are arranged in order, an order which can be visualised by the 

number line. This ordering is unique, such that certain numbers always come before or after 

certain other numbers, and do so in only one way. So when we say that 2 < 3 this is the only 

ordering possible between the numbers 2 and 3. This ordering can be said to carry-over. For 

example if 2 < 5 and 5 < 9 then 2 < 9. This is true for all real numbers in general: if � B � and � B � then � B �. This means that the set of real numbers can informally be said to be uniquely 

uniform in ordering. 

 

 
Beyond this we also have properties of ordered numbers which apply when we perform 

arithmetic operation on a given ordering: if a and b are two real numbers such that � B � then 

for a third real number c we have � � � B � � �. Similarly, for any non-negative number c we 

have �� ≤ ��. 
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The question now is, Is it possible to order the complex numbers in a unique way and preserve 

this ordering under addition and multiplication? If it is possible, then we can place all complex 

numbers in a unique order, and talk about one complex number being less than or greater than 

another complex number. The short answer to this question is, No, and the rest of this section 

is designed to provide some conceptual understanding of why this is so. 

 
Before we can talk about ordering we first need to talk about the equality of number. This may 

seem redundant since, if two real numbers � and ; are such that � ≮ ; and ; ≮ �, then it seems 

obvious that the only possibility left is that � � ; (this leads us to the law of trichotomy, i.e. 

given two numbers � and ; then only one of the following is true: � B ; or � � ; or � Q ;). 

 
The question now is, Can we set up a similar definition of equality for complex numbers? Yes. 

But, given that complex numbers consist of two components, it is not obvious what two equal 

complex numbers should look like. So we need an explicit defintion for this. As such, we say that  

 
two complex numbers � � �� and � � �n are equal when � � � and � � n. 

 
This can be considered a definition of the equality of complex numbers. So if 2 − 3� = � + �� 

we know that � � 2 and � � −3.  

 
Now, when we say � B ;, for any two distinct real numbers � and ;, we are comparing a single 

value, �, with another single value, ;, so there is no ambiguity as to which value is the smaller. 

However, when we want to discuss the ordering of � � �� and � � �n, for �, �, �, n ∈ ℝ, we have 

to consider and compare two values per complex number. How do we do this?  

 
For example, what does it mean for 1 + 2� < 3 − 2�, if this is at all possible? Is 1 + 2� < 3 − 2�  

because 1 < 3? What about 3 − 2� < 1 + 2�? Here 3 ≮ 1 but −2 < 2. So is 3 − 2� < 1 + 2� 

because of this latter criterion? Or is there another way of comparing these two complex 

numbers such that 1 + 2� is definitively less than 3 − 2�? 

 
The problem we have encountered here is due to the lack of uniqueness in which parts of a 

complex number to use for comparison. And if we do decide to define � � �� B � � �n when � B� the question is, Why? What makes � B � the necessary criterion for deciding on “less than”? 
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How to we compare the sizes of these two complex numbers? 

 
So does this mean that complex numbers cannot be ordered? No. There is a way of ordering 

complex numbers, and it is very easy to do so. We have already shown two ways in which 

complex numbers can be ordered: we either define “<” for two complex numbers on the basis 

of � B � or on the basis of � B n. But are these criteria sufficient for us to be able to define a 

consistent ordering of the complex numbers such that this ordering is preserved under addition 

and multiplication in the same way that it is preserved for real number (as illustrated earlier)? 

This is what we will now look into. 

 
Therefore, let � � �� and � � �n be two distinct complex numbers. One way to define an 

ordering of complex numbers is as follows:  

Definition 1: � � �� B � � �n if � B � or � B n. 

Hence 2 + 5� < 9 − �. Similarly 9 − � < 1 + 3�. The question now is, is 2 + 5� < 1 + 3�? No since 2 ≮ 1 and 5 ≮ 3. So there is no uniformity of ordering here, and definition 1 does not work to 

help us order complex numbers in a uniform way. 

 
Let us therefore try another definition which overcomes this problem. For example, we could 

define an ordering of complex numbers as follows  

Definition 2: � � �� B � � �n if � � � B � � n 

Using the example above we now have that 2 + 5� < 9 − � since 2 + 5 < 9 − 1. Similarly 9 −� < 8 + 7�. Furthermore, if we are to keep the uniformity of ordering that exists for real 

numbers then 2 + 5� < 9 − � and 9 − � < 8 + 7� has to imply 2 + 5� < 8 + 7�, which is true by 

definition 2. So it seems that definition 2 satisfies the property of uniformity of ordering, but 
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does it satisfy this property in general? In other words, if � � �� B � � �n and � � �n B [ � �< 

will it be true that � � �� B [ � �< by definition 2? Yes, by the usual definition of “<” for real 

numbers. 

 
However, we now encounter another problem: how do we compare 2 + 5� and 5 + 2�? Well, by 

definition 2 we have 2 + 5 = 5 + 2, so neither number is less than the other number. By the law 

of trichotomy this must imply that these two numbers are equal. But it is obvious that 2 + 5� ≠5 + 2�. Hence definition 2 does not work to help us uniquely order complex numbers in a 

uniform way, such that equality holds true. 

 
Let us therefore try a third definition: 

Definition 3: � � �� B � � �n if � B � and � B n 

According to this definition 2 + 5� < 8 + 6� and 8 � 6� < 9 + 7�, so definition 3 allows for 

uniformity of ordering, and we also overcome the problem caused by definition 2 in that 2 +5� ≠ 8 + 6� ≠ 9 + 7�. However, 2 + 5� ≮ 9 − � and 9 − � ≮ 2 + 5�, so in this case we cannot tell 

which of 9 − � and 2 + 5� is the smaller. Hence definition 3 does not work to help us uniquely 

order complex numbers in a uniform way. 

 
Let us therefore define another ordering of complex numbers: 

Definition 4: � � �� B � � �n if either � B �, or � � � and � B n 

Then, 2 + 5� < 9 − � and 9 − � < 9 + 7�. In this case it is also true that 2 + 5� < 9 + 7� so the 

property of uniform ordering stands, and there is no problem about deciding whether one 

complex number is less than another complex numbers. So it seems as if we have solved the 

problem of the ordering of complex numbers. 

 
1.9.2 Trying to preserve the ordering of complex numbers under addition and multiplication 

Returning to the case of real numbers we saw at the beginning of this section that the following 

property holds: if a and b are two real numbers such that � B � then for a third real number c 

we have � � � B � � �. Similarly, for any � ≥ 0, �� ≤ ��. So, for ordering to be of any value we 

must be able to perform the operations of addition and multiplication on values in order, whilst 

keeping these values appropriately ordered. For example, 2 < 5 implies 2 + 1 < 5 + 1. Or 7 B11 implies 7 × 2 < 11 × 2. Or −3 B 1 implies −3 × −2 > 1 × −2. 
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Does this ability to perform arithmetic hold for complex numbers ordered according to 

definition 4? No. To see why consider 0 < 1 + 2�. We know that 2 + 5� < 9 − � so we should 

have �2 + 5���1 − 2�� < �9 − ���1 − 2��. But this latter inequality simplifies to 12 + � < 7 − 19� 

which is not true by definition 4. So definition 4 does not work to help us uniquely order 

complex numbers in a uniform way. 

 

1.9.3 Another attempt to order complex numbers, and why it fails 

Our definitions so far have been based on the Cartesian form of a complex number. What if we 

choose to define an ordering based on the polar form of a complex number, g�cos � � � sin ��, 

where, for 0 � � � �;, we have g � �� � �; and � � tanD=�;/��? Ultimately we could adopt a 

similar definition to that of definition 4 for the ordering of complex numbers: 

Definition 5: � � �� ≤ � � �n if  

• either √�� + �� < √�� + n� ; 

• or √�� + �� = √�� + n� and tanD=��/�� B tanD=�n/�� 

 
Then 1 + 2� < 2 + 3�. Also, √3 + � < √2 + �√2 and √2 + �√2 < 1 + �√3. Is there a uniformity 

of ordering in this last example? Yes since √3 + � < 1 + �√3, but does this uniformity of 

ordering work in general, and is such an ordering preserved under the operations of addition 

and multiplication? No. The easy way to realise this is that every complex number in polar form 

can be transformed into its equivalent Cartesian form, and we have seen that complex numbers 

in Cartesian form do not preserve ordering under addition and/or multiplication. 

 

1.9.4 Yet another attempt to order complex numbers, and why it fails 

There is an alternative way of conceiving of the ordering of complex numbers, but this will 

require us to redefine what it means for two complex numbers to be equal. As previously 

mentioned two complex numbers � � �� and � � �n are equal when � � � and � � n. This is the 

current state of the mathematical definition of equality of complex numbers, and is the one 

always referred to.  

 
But by changing this definition we will be able to develop a unique uniform ordering of complex 

numbers which is preserved under the operations of addition and multiplication.  
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To begin with we need to understand the geometric meaning of an expression such as |0| � 1. 

If 0 � � � �; we have ��� � ;� � 1, implying that �� � ;� � 1. This is the equation of a circle 

of centre �0, 0� and radius 1. Similarly, |0| � 2 a circle of centre �0, 0� and radius 2, etc. and in 

general |0| � W (where W ∈ ℝ) is a circle of centre �0, 0� and radius k. This situation is illustrated 

below: 

 

From this diagram we see that 0 ≤ |0=| ≤ |0�| ≤ |0
| ≤ |0H|, and in general we can extend this 

to be 0 ≤ |0=| ≤ |0�| ≤ |0
| ≤ |0H| ≤ ⋯ ≤ |0C| where |0�| � g� where g� is a real number such 

that 0 ≤ g� < d, and d → ∞. 

 

However, the same problem of equality of complex numbers occurs here as was discussed 

above. Consider the following four complex numbers of 0= � 3 � 4�, 0� � −3 � 4�. It is clear 

from our earlier work that we cannot tell if 0= B 0� or 0� B 0= or 0= � 0�. But what we do know 

is that they all lie on the same circle given by �� � ;� � 25, i.e. |0| � 5. Therefore, in order to 

get around the problem of ordering we can define a new equality of complex numbers, called 

equi-radii complex numbers, such that two complex are equal if they lie on the circumference of 

the same circle. Hence 0= � 3 � 4� and 0� � −3 � 4� are equal in this sense. Similarly, J= �
√3 + � and J� � √2 + �√2 are equal in this sense.  

 
To emphasise: what we are doing here is to redefine the concept of equality of complex 

numbers. Here the equality is based on complex numbers lying on the same circle given by |0�| � g�, and not on the equality of the Re and Im components of complex numbers. 
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So we can state another defintion for the ordering of complex number: 

 
 Definition 6 

Equality: 0= � 0� if and only if |0=| � |0�| 
Ordering: 0= B 0� if and only if |0=| B |0�|  

 

An alternative, or derived, law of trichotomy, called the D-law of trichotomy by Yadav, can now 

be stated: for any two complex numbers z and w exactly one of 0 ⊐ J or 0 ⊏ J or 0 � J is true 

according to |0| B |J|, |0| Q |J|, or |0| � |J| respectively (where “⊐” is read as “less than”, “⊏” 

is read as “greater than”, and “�” is read as “equals”). 

 
Example 1: The complex numbers 0= � 1 + �, 0� � 2 − �, 0
 � 2 + �, and 0H � 3 � � can be 

ordered as |0=| B |0�| � |0
| B |0H|, i.e. as 0= ⊐ 0� � z
 ⊐ 0H. 

 
Example 2: For the four complex numbers illustrated below we see that 0= ⊐ 0
 ⊐ 0� � zH ⊐ 0R. 

 

This can be seen visually by the fact that, since each vector acts as the radius of a circle from �0, 0�, the length of the shortest vector (and therefore, the smallest radius) is that of 0=, followed 

by 0
, followed by 0� and 0H which have equal length, followed by 0R. 

 

Continuing with our analysis, since g� is a real number we can completely order all complex 

numbers according to their moduli, as well have these numbers obey the law of trichotomy, as 

well as preserve such ordering under addition and multiplication. As such we can state the 

following laws of ordering, the proofs of which are left as an exercise: 
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• Linear ordering: If 0 B J then there exists a complex number M such tJ � 0 � M; 

• Law of trichotomy: For any two complex numbers 0 and J only one of the following is 

possible: 0 B J, 0 � J, or 0 Q J; 

• Law of transitivity: If 0 B J and J B M then 0 B M; 

• Law of addition: If 0 B J then 0 � M B J � M for any complex number M; 

• Law of multiplication: If 0 B J then M0 B MJ for any complex number M Q 0; 

 
(note that the above is not a complete set of laws necessary to define ordering. For a complete 

set of laws that define ordering, such as for real numbers, see any book on real anlysis). 

 
1.9.5 Conclusion 

Does this mean we have overcome all the problems of ordering complex numbers uniquely such 

that ordering is preserved under addition and multiplication? No. We still have a problem, and 

it is to do with our definition of the equality of complex numbers. The fact of the matter is that 

equality of two complex numbers means that both numbers are really one and the same 

number, and occupy the same unique location on the Argand diagram. So, for 2 + 3� to be equal 

to � � ��, and therefore to define one and only one location in the Argand diagram, we must 

have � � 2 and � � 3. So there is only one geometric location at which we can draw �2, 3�.  

 
But if we define equality of complex numbers via the equality of their moduli, i.e. 0= � √3 + � 

and 0� � −√3 + � are equal because |0=| � |0�| then we have lost the property of uniqueness of 

geometric/spatial location since it is clear that 0= and 0� lie in different locations in the Argand 

diagram. This is because, geometrically speaking, the position of a number � � �� in the Argand 

diagram is illustrated as a point, not as a circle or any other path, and things like |0=| � |0�| 
define a path, not a point. 

 
So, however we try to adjust our definitions for the ordering of two complex numbers 0= � � ��� and 0� � � � �n, either as (for example) 

Equality: 0= � 0� if and only if � � � and � � n 

Ordering:  0= B 0�  

 if and only if � B � or � � � and � B n,  

or  

 if and only if |0=| B |0�| or |0=| � |0�| and arg�0=� B arg�0�� 
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or as  

Equality: 0= � 0� if and only if |0=| � |0�| 
Ordering: 0= B 0� if and only if |0=| B |0�|  

 
we end up losing something. If we adopt the former group as our definitions we lose the ability 

to order complex numbers. If we adopt the latter group as our definition we lose the uniqueness 

of equality of complex numbers. 

 
And there is yet another problem with definition 6: Why choose equality of complex numbers 

based on their moduli? We could very well have defined equality of complex numbers as 

equality of arguments. And since arg�0� is a real number we would also have obtained a uniform 

ordering. For example, 1 + �, 2 + 2�, 3 � 3� etc. are all equal complex numbers since they all 

have the same argument of arg�0� � 6/4. However, if J= � √2 + �√2 and J� � 1 + �√3 then J= is less than J� since arg�J=� � 6/4 < arg�J�� = 26/3.  

 
A uniform ordering of complex numbers could then be developed on this basis, and the relevant 

law of trichotomy could be developed, as well as the preservation of ordering under addition 

and multiplication.  

 
However, this again this brings up the issue of the non-uniqueness of the definition of equality: 

which one do we choose? The one based on moduli of complex numbers or the one based on 

the argument of the complex numbers? 

 
Ultimately, given the requirements for the definition of equality of numbers, the law of 

trichotomy, and the preserving of ordering under addition and multiplication (as well as other 

necessary axioms not discussed here), it is not possible to define a unique uniform ordering of 

complex numbers which also preserved ordering under addition and multiplication. 

 

1.10 The quadratic formula for a quadratic equation whose coefficients are complex 

numbers 

We have seen that the way we do arithmetic on real numbers does not completely transfer to 

the way we do it on complex numbers. It is this problem that not everything we do on real 

numbers can be done in the same way on complex numbers which leads us to realising that 
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every single operation and algebra done on real numbers has to be redefined for complex 

numbers. 

 
As such, we cannot assume that an arithmetic, a formula or a function which works on real 

numbers will work in the same way on complex numbers. Furthermore, there are cases where 

an arithmetic, a formula or a function is not defined for real numbers x, but is defined for 

complex numbers z. For example, if x is a real number such that x > 0 then log � exists. But if � ≤ 0 then log � does not exists. However, we will see later on that the function log 0 does exists 

for any complex number, including negative real numbers. In other words we will be able to 

find log�−1� when −1 is seen as a complex number (more on this later). 

 
Let us therefore consider one basic formula, that of the quadratic formula for solving the 

equation ��� � �� � � � 0, where a, b, and c are real numbers and where � ∈ ℝ. We know that 

the roots are given by � � �−� ± √�� − 4�� /�2��. The question now is, Does this formula hold 

when our variable is complex and when the coefficients are complex? We don’t know, so we 

have to prove it.  

 
Therefore, let z be a complex variable such that �0� � �0 � � � 0, and let the coefficients a, b, c 

be complex numbers. In deriving a formula for the roots 0= and 0� we will go through all the 

usual steps necessary, with the following issue in mind: we will need to make sure we correctly 

use all the previously defined rules of arithmetic on complex numbers (not the rules of real 

arithmetic we are used to). 

 
So, given  �0� � �0 � � � 0 

where �, �, � ∈ ℂ, we wish to divide by a. Is this possible given that a is a complex number? Yes 

since division by complex numbers is defined. Hence we have 

0� � �� 0 � �� � 0 , 
from which we have 0� � �� 0 � − �� ,  
 

where this last operation of subtraction is also defined for complex numbers. The next step we 

want to be able to do is that of completing the square, and then solving for z.  
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Are these arithmetic processes valid for complex numbers? Yes, because they simply involve 

multiplication, subtraction and square rooting, all of which are defined for complex numbers. 

Hence 

e0 � �2�f� − ��4�� = − �� , 
e0 � �2�f� = ��4�� − �� = �� − 4��4��  . 

 
Now we arrive at a very formal part of the proof. At this point we might be tempted to take the 

square root of both sides. But since complex numbers are new objects to us, and with our newly 

gained understanding about how to treat and analyse new objects, we cannot assume that 

square rooting will work directly on complex numbers �, �, and � as they do on real numbers 

(remember that rooting is, for the moment, only defined for real numbers). 

 
So how do we get around this problem? Well, we do know how to square complex numbers, 

since we have already defined a way of doing this. We will therefore adopt the approach of 

specifying terms as squares rather than as square roots (this is the same approach we adopted 

in section 1.7.4 when we calculated the square root of a complex number).  

 
Formally speaking our aim is therefore to find solutions to  

 J� � �� − 4��4��  , (20) 

 

where J � 0 � �/�2��. The process of solving quadratic equations with complex coefficients 

in this way is therefore a two-step process:  

 
• first use (20), and simplify this answer.  

• then  

o if the answer is a real number, take square roots as usual to get J, then use J �0 � �/�2�� to find z; 

or 

o if the answer is complex, take the square root as in section 1.7.4, then use J �0 � �/�2�� to find z. 
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For all practical purposes the expression   

 0 � � ± √�� − 4��2�  , (21) 

 
(where a, b, c are complex numbers) found in most books will work. It is basically a short hand 

for the two-stage process above. But, at the formal level, it has to be understood that the “√ ” 

symbol is only to be used for real numbers. When we do get to defining the rooting process for 

complex numbers we will use the symbols of rational powers, i.e. “½”, etc.  

 
The same requirement will apply for other formulae and functions valid in ℂ. In other words, 

we will need to define functions such as <�0� � [® or <�0� � log 0, as well as define (amongst 

other things) differentiation and intregration when performed on functions with complex 

variables.  

 
Examples 

1) Suppose that we want to find the roots of 0� � �0 − 2 = 0, where 0 � � � �;. Using the 

formal approach involving equation (20) we have  

J� � �� − 4�1��−2�4�1�� = 74 . 
 
 Since 7/4 is real we can take roots directly, which gives us J � ±√7/2. From J � 0 ��/�2�� = 0 + �/2 we obtain z to be  

0 � =� �√7 − �  and 0 � − =� �√7 + � . 

 

 Note that 0� � �0 − 2 = 0 can now be factorised as 

+0 − ,√72 − �2-. +0 − ,− √72 − �2-. = 0 . 
 

2) Let 0 � � � �;. Find the roots of 0� � �2� − 3�0 + 5 − � = 0. Hence factorise this quadratic. 

 Solution:  By the standard quadratic formula we have 

0 � −�2� − 3� ± ��2� − 3�� − 4�5 − ��2 = 3 − 2� ± √−15 − 8�2  . 
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 We now need to find √−15 − 8�. Hence  

√−15 − 8� = � + �� . 
 Squaring both sides gives −15 − 8� � �� � ���� , 

 � ��� − ��� � ��2��� . 
 We now compare Re and Im coefficients to get 

 −15 = �� − �� ,   (22) 

and −8 � 2�� implying −4 = �� . (23) 

 
 Substituting (23) into (22) we obtain 

−15 = �� − e−4� f� , 
 which simplifes to 

 �H � 15�� − 16 = 0 . (24) 

 This can be factorised as  

��� � 16���� − 1� = 0 , 
 implying that �� � 16 = 0 or �� − 1 = 0. However, �� � 16 = 0 gives negative ��, leading 

to a being complex. But a is a real number so the negative square root case is not valid. 

Therefore �� − 1 = 0 is the only valid factor. Hence � � ±1,  

 � � ±1 , (25) 

 � � ∓4 . (26) 

 But by (23) we know that �� is negative, so a and b must have opposite signs. Therefore � � 3 and � � −4, or � � −1 or � � 4, and the two roots of 1 − 4� are −1 + 4�. This then 

gives us  

0 � 3 − 2� ± �1 − 4��2 = 2 − 3�, 1 + � , 
 from which we write �0 − �2 − 3�� �0 − �1 + �� = 0 . 
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3) Find the roots of 0� � �1 + 2��0 − 2 + 3� = 0 given that 0 � � � �;. 

 Solution:  By the standard quadratic formula (21) we have 

0 � −�1 + 2�� ± ��1 + 2��� − 4�−2 + 3��2 = −�1 + 2�� ± √5 − 8�2  . 
  
 We now need to find √5 − 8�. Hence  

√5 − 8� = � + �� . 
 Squaring both sides gives 5 − 8� � �� � ���� , 

 � ��� − ��� � ��2��� . 
 We now compare Re and Im coefficients to get 

 5 = �� − �� ,   (27) 

and −8 � 2�� implying −4 = �� . (28) 

 

We could now substitute (28) into (27) for b, but instead we will create a third equation 

based on the modulus of 0. Therefore, since √5 − 8� = � + ��, we have 5 − 8� =�� + ���� = ��� − ��� + ��2���. Taking the modulus of both sides gives 

�5� + �−8�� = ���� − ���� + �2����  implying √89 = �� + �� (29) 

 
 Adding and subtracting (27) and (29) appropriately and take the square root we get  

 

� � ±O12 �5 + √89  , 
 and  

� � ±O12 �−5 + √89  . 
 

 By (28) the signs of a and b are opposite, so the roots of 5 − 8� are � � =√� ��5 + √89  and 

� � − =√� ��−5 + √89  , or � � − =√� ��5 + √89  and � � =√� ��−5 + √89  . 
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Exercises: Find the roots of i) 0� − �1 + ��0 + 6 − 17� = 0, ii) 0� − 20 + 1 − 2� = 0, iii) �0� −0 � � � 0. 

 
4) Given that 0= � − 
� � R� � is a root of <�0� � 40� + 120 + 34 = 0, factorise <�0�. 

Solution:  The quadratic has real coefficients, therefore  0=mmmm is also a root of <�0�. Hence  

40� + 120 + 34 = °0 − e− 32 + 52 �f± °0 − e− 32 − 52 �f± = 0 . 
 
5) To find a quadratic <�0� � �0� � �0 � 0 � 0 such that one root of <�0� is 2 − � we can 

proceed as follows: if 2 − � is a root then 2 + � is also a root when �, �, � ∈ ℝ. Hence  

�0 − �2 − �� �0 − �2 + �� = 0 , 
giving  

 0� − 0>�2 − �� + �2 + ��? + 5 � 0 , 

⟹ 0� − 40 + 5 � 0 . 

 

Is this quadratic unique in having the root 2 − �? No. Firstly there may be other quadratics with 

real coefficients which have 2 − � as a root. Secondly, there may be quadratics with complex 

coefficients which have 2 − � as a root. To see this latter possibility let 0� � � � �; be another 

root of <�0� such that 0� ≠ 0=c . Then  

�0� � �0 � � � �0 − �2 − �� �0 − �� + �;�  , 
 � 0� − 0>�2 − �� + �� + �;�? + �2� + ;� + ��2; − �� , 
 � 0� − 0>�2 + �� + ��; − 1�? + �2� + ;� + ��2; − �� . 

 
Comparing Re and Im coefficients we have  

� � 1 , � � −2 − � − ��; − 1� , � � 2� + ; + ��2; − �� . 
 

We are now free to choose any value for x and y to solve for b and c. To make things easy choose � � −3 and ; � 2 in order to get a simple number for b.  
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Hence � � 1 − � and � � −4 + 7�, and we have  

<�0� � 0� � �1 − ��0 − 4 + 7� = 0 
 
as a quadratic equation having one root to be 2 − �. We can then confirm that <�2 − �� = 0. 

 
Exercise: For each of the following roots, find a quadratic <�0� � �0� � �0 � 0 � 0 such that �, �, � ∈ ℝ and �, �, � ∈ ℂ: 

i) 0= � 1 + � ii) 0= � 1 − 2� iii) 0= � −1 + 7�/5 

 

1.11 The Polar form of a complex number 

1.11.1 The polar form of a complex number 

We saw in section 1.4 that for a complex number 0 � � � �;, we have � � g cos � and ; �g sin �. As a result of this we are in a position to express z in an alternative form, namely the 

modulus-argument form or polar form. Hence 0 � � � �; becomes 

 0 � g�cos � � � sin �� . (30) 

Expression (30) now allows us to convert any complex number from Cartesian form to polar 

form. Since �� � ;� � g� cos� � � g� sin� � � g� then |0| � g � ��� � ;�. Also since ;/� �sin � / cos � we have � � tanD=�;/��. 

For example,  

i) if 0 � 1 + � then g � |0| � √1� + 1� = √2, and � � arg�0� � tanD= 1/1 = 6/4. Hence 0 � √2�cos 6/4 + � sin 6/4�; 

ii) if 0 � √3 − � then g � |0| � ��√3 � + �−1�� = 2, and � � arg�0� � tanD= −1/√3 =
−6/6. Hence 0 � 2�cos�−6/6� + � sin�−6/6�� = 2�cos 6/6 − � sin 6/6�. 

iii) if 0 � 1 then g � |0| � √1� + 0� = 1 and � � arg�0� � tanD=�0/1� = 0. Hence 0 �cos 0 + � sin 0. 

iv) if 0 � −� then g � |0| � �0� + �−1�� = 1 and � � arg�0� � tanD=�−1/0� = −6/2. 

Hence 0 � cos�−6/2� + � sin�−6/2� = cos 6/2 − � sin 6/2. 
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Other examples  

1) For the pair of complex numbers 0= � 10 + 8�, 0� � 11 − 6� which is closest to the origin? 

Which has rotated by the least amount in absolute terms? Which is closest to 0
 � 1 + �? 

 
Solution 

 Distance to the origin is given by g � |0| and rotation is w.r.t. to the positive real axis and is 

given by � � arg 0. Hence for distance we have |0=| � √10� + 8� = 12.81, and |0�| �
�11� + �−6�� = 12.53. Hence 0� is closest to the origin. 

 
 For amount of rotation we have arg�0=� � tanD=�8/10� = 0.675 radians, and  arg�0�� �tanD=�11/−6� = −1.071. Hence 0= has rotated the least amount in absolute terms. 

 
 To find which complex number is closest to 0
 � 1 + � we need to find the distance between 0= and 0
 and compare this with the distance between 0� and 0
. Hence  

0= − 0
 � 10 + 8� − �1 + �� = 9 + 7�, implying |0= − 0
| � √9� + 7� = √130 . 
 and  

0� − 0
 � 11 − 6� − �1 + �� = 10 − 7�, implying |0� − 0
| � �10� + �−6�� = √136 . 
 So 0= is closest to 0
. 

 

2)  Notice that 0 � 1 − cos � − � sin � is not in standard polar form. To express this equation 

in standard polar form we proceeed as follows: remember that by standard trig identities 

we have sin 2� = 2 sin � cos �, hence sin � � 2 sin �/2 cos �/2. Also, cos 2� = 1 − 2 sin� �. 

Hence cos � � 1 − 2 sin� �/2. Therefore z becomes 

0 � 2 sin� �2 − 2� sin �2 cos �2 . 
Hence 0 � 2 sin �2 esin �2 − � cos �2f . 

 
 There are now two ways to proceed. We can either i) factorise i from this equation to obtain  

0 � −2� sin �2 ecos �2 − � sin �2f , 
or ii) we can say 0 � 2 sin �2 �cos ² + � sin ²� 
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where ² is chosen so that cos ² � sin �/2 and sin ² � − cos �/2. Solving these two 

equation gives us ² � �� − 6�/2.  

 
Note that this version of the polar form is valid only if sin �/2 is positive. If sin �/2 is 

negative then we write  

0 � −2 sin �2 �− cos ² − � sin ²� = −2 sin �2 �cos�² − 6� + � sin�² − 6�� . 
 

Two general comments are now in order about a complex number z. Firstly we now have two 

ways of expressing the coordinates of a complex number z in a plane:  

the Cartesian form 0 � � � �;, and the polar form 0 � g�cos � � � sin ��. 

There is also a third way of expressing the location of a point in the complex plane with the help 

of the complex conjugate. This can be seen as follows: since  

 0 � � � �; 

we have 0∗ � � − �; . 
Solving for x by adding gives 

� � 12 �0 + 0∗� 

and solving for y by subtracting gives 

; � 12� �0 − 0∗� . 
We can therefore use �0, 0∗� as coordinates to specify any complex number in the Argand 

diagram.  

 

Secondly, note that the general form of the modulus of the polar form of z is 

|0| � ��g cos ��� � �g sin ��� � �g��cos� � � sin� �� � g , 
as expected, and the general form of the argument of z is 

arg�0� � tanD= eg sin �g cos �f � tanD=�tan �� � � , 
as expected. 
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1.11.2 Proof of the quadratic formula using polar form of a complex number 

This section is taken from “The Quadratic Formula Revisited Again”, Peter A. Lindstrom, Pi Mu 

Epsilon Journal, Vol. 10, No. 6, (SPRING 1997), pp. 461-463. 

 
It is possible to derive the quadratic formula for a quadratic ; � ��� � �� � � � 0 when the 

complex roots x are in polar form. As such, let � � g�cos � � � sin ��, where g Q 0 and �� � −1. 

If x is a solution to the aforementioned quadratic then  

; � �g��cos � � � sin ��� � �g�cos � � � sin �� � � � 0 . 
Our aim is to solve for g cos � and g sin �. Hence (using cos� � � sin� � � 1 where appropriate), 

we have >2��g cos ��� − �g� + �g cos � + �? + �g sin � >2�g cos � + �? = 0 . 
Equating Re and Im parts we have, respectively, 

 2��g cos ��� − �g� + �g cos � + � = 0 (31) 

and  g sin � >2�g cos � + �? = 0 . (32) 

 
From (32) we have two solutions: g sin � � 0 and 2�g cos � + � = 0. For the latter we obtain  

 g cos � � − �2� . (33) 

Substituting this into (31) we obtain  

2� e− �2�f� − �g� + � e− �2�f + � = 0 , 
which simplifies to g� � �/�. Now using �g cos ��� � �g sin ��� � g� we have  

�g sin ��� � g� − �g cos ��� , 
 � g� − e− �2�f� , 
 � �� − e− �2�f� , 
 � 

4�� − ��4��  . 
Hence  

 g sin � � ± √4�� − ��2�  . (34) 
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Therefore, � � g�cos � � � sin �� becomes 

 � � − �2� ± � √4�� − ��2�  . (35) 

 

If 4�� − �� > 0, equation (35) expresses the fact that the roots � of ; � <��� are complex. If 4�� − �� < 0, equation (35) can be transformed as follows: 

� � − �2� ± √−1 × √4�� − ��2�  , 
 � − �2� ± ��−1��4�� − ���2�  . 

In other words,  

 � � − �2� ± √�� − 4��2�  , (36) 

 
which expresses the fact that the roots � of ; � <��� are real. 

 

Recall that one of the solutions to equation (32) is g sin � � 0. Since g Q 0 we have sin � � 0. 

This means that the polar form of the roots are � � g cos �, implying these roots are purely real. 

 

1.11.3 Choosing the correct argument for z 

Let us return to studying the polar form of a complex number via the following two examples: 

i) if 0 � −√2 + � then g � |0| � ��−√2 � + 1� = √3, and � � arg�0� � tanD= −1/√2 ≈
−0.62 radians. Hence 0 � √3�cos�−0.62� + � sin�−0.62�� = √3�cos 0.62 − � sin 0.62�. 

ii) if 0 �  −1 − �√3/2 then g � |0| � ��−1�� + �−√3/2 � = √7/2 and � � arg�0� �
tanD= −�√3 /2/�−1� = 56/22. Hence 0 � √7/2�cos�56/22� + � sin�56/22��. 

 

The answers 0 � √3�cos 0.62 − � sin 0.62� and 0 � √7/2�cos�56/22� + � sin�56/22��, 

although numerically correct, do not correctly represent the original complex numbers. In fact, 

there are now two major issues we need to deal with, one dealing with the incorrect 

representation just mentioned, and the other dealing with the periodicity of sin and cos.  
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In terms of the incorrect representation of the two polar form answers in i) and ii) above we 

see that  

• for i), 0 � −√2 + � lies in quadrant II of the Argand diagram, shown as 0= in diagram (a) 

below. But in polar form 0 � √3�cos 0.62 − � sin 0.62� is located in quadrant IV, shown 

as 0� in the diagram (a) below. 

• for ii), 0 � −1 − �√3/2 lies in quadrant III of the Argand diagram, shown as 0
 in diagram 

(b) below, whereas in polar form 0 � √7/2�cos�56/22� + � sin�56/22�� is located in 

quadrant I, shown as 0H in the diagram (b) below. 

 

  

 diagram (a) diagram (b) 

 
So what went wrong? In one sense, nothing went wrong. Our maths was correct in-and-of itself, 

so why did such a problem occur, and how do we correct it? Well, the reason why the error 

occurs is because of the nature of arctan, more precisely the interval over which arctan is 

defined. 

For a complex number z = a + ib, we evaluate its 

argument as ² � tanD= �/�. Recall that the 

principle argument of ² here is −6/2 < ² <6/2, as illustrated diagrammatically on the 

right. 
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However, any complex number can lie in one of four possible locations, as shown in the 

diagrams below.  

 

(a) (b)  

   
 

 

 (c)       (d) 

   

In each case we want to measure angle �, the angle the complex number makes with the Re axis, 

but in evaluating arctan we will not always get �. So what we have do is to make a relevant 

correction to ² in order to account for the actual position of each complex number z. we do this 

by appropriately adding or subtracting π from ² in order to obtain �.  

 
For diagrams (a) and (d) 

Here a > 0. In this case ², calculated as tanD= �/� and lying in ,
2 2

π π 
− 
 

, already matches � so 

no correction needs to be made to ². Hence � � tanD= �/�. 
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For diagram (b) 

Here a < 0 and b > 0. In this case ², calculated 

as tanD= �/� and lying in ,
2 2

π π 
− 
 

, does not 

match � so we need to correct this to 

 � � 6 � ² � 6 � tanD= �/� 

 

 
For diagram (c) 

Here a < 0 and b < 0. In this case ², calculated 

as tanD= �/� and lying in ,
2 2

π π 
− 
 

, does not 

match � so we need to correct this to 

 � � ² − 6 � tanD= �/� − 6 

 

 
Summary 

In summary we have the argument � of a complex number z = a + ib to be 

 

Arg 0 � � �
⎩⎪
⎪⎨
⎪⎪
⎧ tanD= �� for � Q 0

tanD= �� + 6 for � < 0, � > 0
tanD= �� − 6 for � < 0, � < 0

 

 
along with  

Arg 0 � � �
⎩⎪⎪
⎨
⎪⎪⎧

0 for � ≠ 0, ; = 0
6/2 for � = 0, ; > 0

−6/2 for � = 0, ; < 0
undefined for � = 0, ; = 0
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So the answers to example i) and ii) can now be corrected as follows: 

• if 0 � −√2 + � then g � |0| � ��−√2 � + 1� = √3. Since � B 0 we have � � arg�0� �
tanD= −1/√2 + 6 ≈ 2.53 radians. Hence 0 � √3�cos 2.53 + � sin 2.53�, which now lies in 

quadrant II; 

• if 0 �  −1 − �√3/2 then g � |0| � ��−1�� + �−√3/2 � = √7/2. Since � B 0 and � B 0 

we have � � arg�0� � tanD= −�√3 /2/�−1� − 6 = −176/22. Hence  

0 � √7/2�cos�−176/22� + � sin�−176/22�� = √7/2�cos�176/22� − � sin�176/22��, 

which now lies in quadrant III. 

 
The polar form of the complex numbers now correctly represents the original Cartesian forms. 

 
The second issue is that, because of the periodic nature of sin and cos, we can represent any 

complex number 0 � � � �� in polar form in an infinite number of ways. In example 1) above 

we transformed 0 � 1 + � into 0 � √2�cos 6/4 + � sin 6/4�. However, this can also be 

expressed as 0 � √2�cos 96/4 + � sin 96/4� or 0 � √2�cos 176/4 + � sin 176/4�. In fact, any 

complex number  0 � √2�cos�6/4 ± 2W6� + � sin�6/4 ± 2W6��, where W � 0, 1, 2, …, express 

the samne Cartesian form 0 � 1 + �. The same is true for any complex number in polar form.  

 

 

More than one choice for the argument θ 

 
The question now is, Which polar form do we choose? Well, we need to decide on what we will 

take as the first argument, or principal argument, of our complex number. To do this we need 

to define a principal interval over which we measure �. Since sin and cos have period 26 we 



110 

 

will choose our interval to be 26 long. For example, we could choose >0, 26� or �−6, 6?. The 

interval we choose to measure � over is �−6, 6?. This is chosen partly as a convention and partly 

for technical reasons to do with more advanced complex number work. 

 
Hence, from now on, the principal argument of z, denoted Arg�0�, is given by 

 −6 B Arg�0� ≤ 6 . (37) 

Note that some books define the principal angle to be 0 ≤ Arg�0� < 26. This is ok. The aim is to 

define the principal argument so as to include 0 in its interval. 

 

The interval of Arg(z): Angles cannot go beyond π, and negative angles cannot equal −π, 

as identified in the diagram by the thick red line. 

 

So, for the following examples we have 

• for 0 � 1 + � the principal argument is � � Arg�0� � 6/4, with other arguments being 6/4 ± 2d6. Hence 0= � √2�cos 6/4 + � sin 6/4�, with 0� � √2�cos 96/4 + � sin 96/4�, 0
 � √2�cos 176/4 + � sin 176/4�, etc. 

• for 0 � √3 − � the principal argument is � � Arg�0� � tanD= −1/√3 = −6/6, with other 

arguments being −6/6 ± 2d6. Hence 0= � 2�cos�−6/6� + � sin�−6/6�� = 2�cos 6/6 −� sin 6/6�, with 0� � 2�cos�56/6� + � sin�56/6��, etc.  

• for 0 � −√2 + � the principal argument is � � Arg�0� � tanD= −1/√2 + 6 ≈ 2.53 

radians. Hence 0= � √3�cos 2.53 + � sin 2.53�, with other complex numbers following at 26 intervals, i.e. 0� � √3�cos 5.76 + � sin 5.76�, etc. 
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• for 0 �  −1 − �√3/2 the principal argument is � � Arg�0� � tanD= −�√3 /2/�−1� −
6 = −176/22. Hence 0= � √7/2�cos�176/22� − � sin�176/22��, with other complex 

numbers following at 26 intervals, i.e. 0� � √7/2�cos�56/22� + � sin�56/22��, etc. 

 
In general we therefore have  

 arg�0� � Arg�0� ± 2W6. (38) 

for W � 0, 1, 2, 3 … Therefore, given arg�0� for which the principal argument is Arg�0� � � then arg�0� consists of the set of values 

arg�0� � �… , � − 46, � − 26, �, � + 26, � + 46, … � . 
Therefore that arg�0� represents any angle of any size, for example, choosing three arguments 

at random, arg�0=� � 36/4 or arg�0�� � 56/4 or arg�0
� � 96/4. However, Arg�0� only ever 

represent an angle in the interval −6 B Arg�0� ≤ 6. Hence, Arg�0=� � 36/4, Arg�0�� � −36/4, 

and Arg�0
� � 6/4. 

 
The following four examples illustrate this further: 

• for 0 � 1 + �: Arg�0� � Ḩ, whereas arg�0� � ⋯ , − =T¸H , − ¹Ḩ , − Ḩ , Ḩ , ¹Ḩ , =T¸H , … 

• for 0 � √3 − �: Arg�0� � − Ş, whereas arg�0� � ⋯ , − �R¸S , − =
¸S , − Ş , ==¸S , �
¸S , … 

• for 0 � −√2 + �: Arg�0� � 2.53, whereas arg�0� � ⋯ − 10.03, −3.75, 2.53, 8.81, 15.10, … 

• for 0 � −1 − �√3/2: Arg�0� � −2.43, whereas arg�0� � ⋯ , −8.71, −2.43, 3.85, 10.14, … 

 

A set of diagrams illustrating a representative arg�0� and Arg�0� for complex numbers in each 

of the four quadrant is shown below: 
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Examples 

Convert the following complex number into polar form, using only the principal argument: 

 i) 0 � 5 − 5� ii) 0 � −2 + 2√3. � iii) 0 � −12 − 5� 

 iv) 0 � −10 v) 0 � 6� vi) 0 � 3/�−1 + �� 

 vii) 0 � �4 + ���1 − ���2 + ��  viii) 0 � �1 + ��R 

 
Solutions 

i) For 0 � 5 − 5� we have g � |0| � �5� + �−5�� = 5√2. The argument � � arg�0� �Arg�0� � tanD=�−5/5� = −6/4.  
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  Hence 

0 � 5√2�cos�−6/4� + � sin�−6/4�� = 5√2�cos�6/4� − � sin�6/4�� . 
ii) For 0 � −2 + 2√3. � we have g � |0| � ��−2�� + �2√3 � = 4. The argument � �

arg�0� � Arg�0� � 6 � tanD= ¥−2/�2√3 ¦ + 6 = −6/6 + 6 = 56/6. Hence 

0 � 4�cos�56/6� + � sin�56/6�� . 
iii) For 0 � −12 − 5� we have g � |0| � ��−12�� + �−5�� = 13. The argument � �arg�0� � Arg�0� − 6 � tanD=�−5/�−12�� − 6 = −2.75 radians. Hence 

0 � 13�cos�−2.75� + � sin�−2.75�� = 13�cos�2.75� − � sin�2.75�� . 
iv) For 0 � −10 we have g � |0| � ��−10�� + 0� = 10. The argument � � arg�0� �Arg�0� � 6 � tanD=�0/10� + 6 = 6. Hence 

0 � 10�cos 6 + sin 6� . 
v) For 0 � 6� we have g � |0| � √0� + 6� = 6. The argument � � arg�0� � Arg�0� �tanD=�6/0� = 6/2. Hence 

0 � 6 ¥cos 62 + � sin 62¦ . 
vi) For 0 � 3/�−1 + �� we have 

0 � 3−1 + � . −1 + �−1 + � = 12 �−3 − 3�� . 
  Hence g � |0| � ��−3/2�� + �−3/2�� = 3/√2. The argument � � arg�0� � Arg�0� −6 � tanD=��−3/2�/�−3/2�� − 6 = −36/4. Hence 

0 � 3√2 ecos e− 364 f + � sin e− 364 ff = 3√2 ecos 364 − � sin 364 f . 
 

vii) For 0 � �4 + ���1 − ���2 + �� we expand all three factors to obtain 0 � 13 − �. Hence 

g � |0| � �13� + �−1�� = √170. The argument � � arg�0� � Arg�0� � tanD=�−1/13� = −0.077. Hence 

0 � √170�cos�−0.077� + � sin�−0.077�� = √170�cos�0.077� − � sin�0.077�� . 
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viii) For 0 � �1 + ��R we obtain 0 � 1 + 5� + 10�� + 10�
 + 5�H + �R = −4 − 4� using 

Pascal’s triangle. Hence g � |0| � ��−4�� + �−4�� = 2√8. The argument � �arg�0� � Arg�0� − 6 � tanD=�−4/−4� − 6 = −36/4. Hence 

0 � 2√8�cos�−36/4� + � sin�−36/4�� = 2√8�cos�36/4� − � sin�36/4�� . 
 

Notice that these last three examples were more or less laborious to do since we first had to do 

some simplifying arithmetic before we could convert the complex numbers into polar form. in 

section 0 we will see a much simpler way of being able to perform multiplication and division). 

 

More examples 

1) Write the following complex numbers in terms of their principal arguents, then write them 

in the form � � �;: 

 i) 0 � 5�cos�76/6� + � sin�76/6�� ii) 0 � 8√2�cos�116/4� + � sin�116/4�� 

 
 iii) 0 � 6�cos�6/8� − � sin�6/8�� 

 

 Solutions 

 Remember that the principal argument is given by −6 B � ≤ 6 hence  

 i) 0 � 5�cos�76/6� + � sin�76/6�� = 5�cos�6/6� + � sin�6/6��. Hence in Cartesian form 

we have 

0 � 5√32 + 52 � . 
 ii) 0 � 8√2�cos�116/4� + � sin�116/4�� = 8√2�cos�36/4� + � sin�36/4��. Hence in 

Cartesian form we have 

0 � 8√2 e− 1√2 + 1√2 �f = −8 + 8� . 
 iii) 0 � 6�cos�6/8� − � sin�6/8�� is already in principal argument form. However, 

converting into standard form we have 0 � 6�cos�−6/8� + � sin�−6/8�� which in 

Cartesian form is 0 � 5.54 − 2.30�. 
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2) Let 0= � g=�cos �= � � sin �=� and 0� � g��cos �� � � sin ���. If 0= � 0� how are g= and g� 

related? How are �= and �� related? 

 Solution: For the moduli we have |0=| � ��g= cos �=�� � �g= sin �=�� � ��g=���1� = g=. 

Similarly |0�| � ��g� cos ���� � �g� sin ���� � ��g����1� = g�. Hence if 0= � 0� then g= � g�. 

 For the argument we have arg�0=� � �=. Hence, if 0= � 0�, arg�0�� � �� � �=. But by the 

periodicity of sin and cos, arg�0�� is also equal to �� � �= ± 2d6. Hence arg�0�� is any 26 

multiple of arg�0=�. 

 
3)  One person believes that arg�0∗� � − arg�0�. For example, if 0 � 1 + � then 0∗ � 1 − �. Here arg�0� � 6/4 and arg�0∗� � −6/4. Another person disagrees with this, and claims to have 

a counter-example: if 0 � � then 0∗ � −�. Hence arg�0� � 6/2 and arg�0∗� � 36/2 implying arg�0∗� ≠ − arg�0�. Who is correct and why? 

 Solution  

 Remember that arg�0� � Arg�0� ± 2d6, where d � 0,1,2,3, …, and that −6 B Arg�0� ≤ 6. 

So for 0 � 1 + �, arg�0� � Arg�0� � 6/4, and for 0∗ � 1 − �, arg�0� � Arg�0� � −6/4. 

Hence, arg�0∗� � − arg�0� in this case. 

 For 0 � �, arg�0� � Arg�0� � 6/2, and for 0 � −�, arg�0� � Arg�0� � −6/2, i.e. 6/2 

measured in the clockwise direction, not 36/2 which is a measurement in the anti-

clockwise direction. Hence, arg�0∗� � − arg�0� in this case also. 

 
4) Suppose we have a complex number 0 � 1 + cos ² + � sin ², where −6 B � ≤ 6. This is not 

in the standard polar form 0 � g�cos � � � sin ��. So, in order to transform this into 

standard polar form we find g and � as follows: 

1) g � |0| � ��1 + cos ²�� + sin� ² = �2�1 + cos ²� = �4 cos��²/2� = 2|cos�²/2�| 
 where, since we take g as positive, the modulus sign indicates that we want the 

magnitude of cos; 

2) we find the argument as follows: the general argument � is the angle made by the 

line/length of z with the Re axis. By our previous calculation the length of the line is 

given by 2|cos�²/2�|, hence the angle z makes with the Re axis is ²/2. 

o if ² ∈ �−6, 0� then ²/2 ∈ �−6/2, 0� implying that z is in the fourth quadrant. 

Hence  

� � tanD= e sin ²1 + cos ²f = tanD= ¥tan ²2¦ = ²2 .  



116 

 

  This therefore gives us 

0 � �2 cos�²/2 ���1 + cos�²/2� + � sin�²/2��. 

o if ² � 0 then  

0 � 2�1 + 1� = 4 . 
o if ² ∈ �0, 6� then ²/2 ∈ �0, 6/2� implying that z is in the first quadrant. Hence  

� � tanD= e sin ²1 + cos ²f = tanD= ¥tan ²2¦ = ²2 .  
  This therefore gives us 

0 � 2 cos�²/2 � �1 + cos�²/2� + � sin�²/2��. 

 
o if ² � 6 then 0 � 0 . 

 

Exercises: 

1) Suppose 0= is located in the first quadrant. For each 0� below state, with reasons, the 

quadrant in which 0=0� is located: 

i) 0� � 12 + � √32  ii) 0� � − √32 + 12 � 

iii) 0� � −� iv) 0� � −1 

 
1.11.4 The geometric effect of powers of i 

In section 1.7.2 we saw the geomertic effect of multiplying by i. Here we will look at this effect 

agin, but this time from the perspective of the polar representation of i. So, let us take 0= � 1. In 

polar form this becomes  0= � cos 0 + � sin 0 . 
If we now consider 0� � �. 0= = �, it polar form is  

0� � cos 62 + � sin 62 . 
We can now see much more obviously that the effect of multplying by i is of rotate 0= by 6/2 

radians, as illustrated below. 

  



117 

 

 

Multiplying 0� by i gives 0
 � �. 0� = ��0= = −1, which in polar form is given by  

0
 � cos 6 � � sin 6 . 
Again we see that the effect of multplying by i is of rotate 0� by 6/2 radians, as illustrated below. 

 

 

 

Multiplying 0
 by i gives 0H � �. 0
 = �
0= = −� and multiplying 0H by i gives 0R � �. 0H = �H0= =1. In polar form these are given by 0H � cos�−6/2� + � sin�−6/2� and 0R � cos 0 + � sin 0. Note 

that although we don’t do this, 0H and 0R can also be written as  

0H � cos e362 f + � sin e362 f 

and 0R � cos 26 + � sin 26 . 
 
From these we can see that the effect of continually multiplying by i is to continually rotate by 6/2 radians. The sequence of complex numbers 0=, 0�, 0
, 0H, and 0R is illustrated below. 

−2 −1 1 2

−1.5

−1

−0.5

0.5

1

1.5

2

Re

Im

z₁

z₂
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If we continue to multiply by i we end up with  

0S � �. 0R = cos e562 f + � sin e562 f = � , 
0T � �. 0S = cos e662 f + � sin e662 f = −1 , 

etc. The rotation effect of multiplying by i can then be summarised as follows:  

n: 0 4 8 12 … gives �C � 1 

n: 1 5 9 13 … gives �C � � 

n: 2 6 10 14 … gives �C � −1 

n: 3 7 11 15 … gives �C � −� 

which can all be condensed into the following formula: 

�HC � 1 , �HCV= � � , �HCV� � −1 , �HCV
 � −� , 
 
for d � 0, 1, 2, 3, 4 … The cases for d � 0, 1, 2, 3,4 are illustrated below: 

 
  

−2 −1 1 2
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−1
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0.5

1

1.5

2

Re

Im

z₁
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z₃

z₄

z₅
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The rotation effect of i: 1 × �C for n = 0, 1, 2, 3, 4. 

 
In general, when looking to simplify expressions involving powers of i we tend to look for 

multiples of �� or �H. For example,  

�

 � ��H�U. � = � , �SU � ��H�=T � 1 , �UT � ��H��=. �
 = �
 , �=F� � ��H��R. �� = −1 . 
 

All of the above illustrates the effect of multiplying by a number i. However, it is also possible 

to see i as an operator, i.e. something which has an effect on an object which results in that 

object being tranformed, just as +, −, ×, ÷, d/dx are operator. Louis Diamond describes this well. 

Considering a complex number as a “directed magnitude”, and starting with a line segment OA 

along the real axis, he say: 

 
“Argand considered that the “multiplication” of A by � was the algebraic equivalent of a 

geometric counterclockwise rotation about O [the origin] of a directed line segment OA 

through an angle whose measure was 6/2 radians. The terminal point of the rotated 

segment became º�, the length of the segment being unaltered. In other words � acted 

upon the directed magnitude OA to change its direction by 90° counterclockwise 

without changing its magnitude. A second “multiplication” by � rotates the line segment º� counterclocwise about O through 6/2 radians so that its terminal point is now −º. 

These two succesive operations by � constitute the operation �� which is equivalent to 

the ordinary multiplication of A by −1. The operation �
 brings the terminal point to −º�, or �
 � ��. � = −1� = −�. The operation �
 is equivalent to the operation −�. By 

defining the operation −� as a clockwaise rotation about O through 6/2 radians, the 

operation �
 � −� is consistent. Four successive operations by �, or the operation �H, 

brings the terminal point of the line segment back to �º. This is equivalent to the 
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ordinary multiplication of �º by �1. ���� � �−1��−1� = +1. Complex numbers are 

thus conceived of, not simply as magnitudes, but as directed magnitudes. Particularly 

note that � as an operator has no effect upon magnitude but only upon the direction of 

the magnitude. 

[…] In a similar manner we can regard the factor �cos » � � sin »� as an operator 

or direction coefficient which rotates any directed magnitude counterclockwise through 

an angle [phi] radians and which leaves the magnitude unchanged. The factor Z�cos » � � sin »� acts in exactly the same manner but multiplies the magnitude by Z. 

The operator 1�cos 6/2 + � sin 6/2� completely fulfills the earlier definition of i. 

[…] The operator >cos�−»� � � sin�−»�? rotates a complex number through an 

angle −». […] [This is equivalent to] �cos » − � sin »�. If a complex number is operated 

upon by �cos » � � sin »� and then by �cos » − � sin »� the rotation through » and 

then through −» with magnitude unchanged leaves the complex number unchanged. 

The operator product �cos » � � sin »��cos » − � sin »� � cos� » � sin� » � 1, i.e. it 

leaves magnitude and direction unaltered.” 

(“Introduction to complex numbers”, Louis E. Diamond, Mathematics Magazine, Vol 30, No. 5, 

(May - Jun., 1957), pp233-249) 

 

1.12 On exponentiation of complex numbers: DeMoivre’s theorem 

Let us return to example viii) on p114. Here we wanted to find 0 � �1 + ��R. To do this we 

performed some simplifying arithmetic before being able to convert z into polar form. In this 

case we were lucky enough to be able to use Pascal’s triangle to expand z easily and quickly. 

Now suppose we wanted to find 0 � �0.3487 − 6.149���
. Although this can be expanded using 

the binomial theorem it would be quite laborious.  

 
However, there is a much quicker and more powerful way of performing the latter operation, 

this way being called DeMoivre’s theorem. DeMoivre’s theorem reduces the powering operation 

to a multiplication operation, thus allowing us to expand a binomial expression however large 

the power. 

 
Expressing a complex number in polar form is very very useful for dealing with complex 

numbers. Amongst other things it allows us  perform multiplication, division and taking roots 

much more easily, as we shall see.  
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1.12.1 DeMoivre’s theorem  

Consider, therefore, the following complex number. 

0 � g�cos � � � sin �� . 
Squaring this number we have  

0� � g��cos � � � sin ��� , 
 � g��cos� � � 2� sin � cos � − sin� �� ; 
 � g��cos� � − sin� � � 2� sin � cos �� . 

Using standard trig identities on the Re and Im terms in the brackets we have  

0� � g��cos 2� + �. sin 2�� . 
Is it just a coincidence that the squaring of z leads simply to the squaring of the modulus and 

the doubling of the argument? What happens if we take the cube of z? 

0
 � g
�cos � � � sin ��
 , 
 � g
�cos � � � sin ����cos � � � sin �� ; 
 � g
�cos 2� + � sin 2���cos � + � sin �� ; 
 � g
�cos 2� + � sin 2���cos � + � sin �� ; 
 � g
�cos 2� . cos � − sin 2� . sin � + ��cos 2� . sin � + sin 2� . cos ��  ; 
 � g
�cos 3� � � sin 3�� , 

again by use of trig identities. The above seems to suggest the following pattern  

0H � gH�cos 4� + � sin 4�� , 
0R � gR�cos 5� + � sin 5�� , 

and in general it seems we have  

0C � gC�cos d� � � sin d�� , 
at least for positive integer powers. If this is true we will have an incredibly simple way of 

powering complex number when the power is a positive integer. In fact, this last expression is 

true, not only for d ∈ ℕ but also for d ∈ ℝ, and is know as DeMoivre’s theorem. 
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1.12.2 Proof of DeMoivre’s theorem (up to rational powers) 

We will now prove that DeMoivre’s theorem in stages, where the first stages is to show it is true 

for positive integer powers. We are therefore claiming that if 0 � g�cos � � � sin ��, 

>g�cos � � �. sin ��?C = gC�cos d� + � sin d�� , 
is true for d ∈ ℕ. 

Proof part 1: Let l�d� be >g�cos � � �. sin ��?C = gC�cos d� + �. sin d�� 

1. Base case: Let d � 1. Therefore the left hand side becomes  

>g�cos � � �. sin ��?= = g�cos � + � sin �� , 
 and the right hand side becomes 

g=�cos�1 × �� + � sin�1 × ��� = g�cos � + � sin �� . 
 The left hand side equals the right hand side, hence l�1� is true. 

2. Inductive assumption – Let d � W: Let l�W� be true for some positive integer k 

where 1 ≤ W ≤ d. Then we have  

l�W�: >g�cos � � �. sin ��?X = gX�cos W� + � sin W�� . 
3. Let d � W � 1. We want to show that l�W� ⟹ l�W � 1�. Hence multiplying l�W� 

by g�cos � � � sin �� we obtain, by using our inductive assumption, 

gX�cos W� � � sin W��. g�cos � + � sin �� = gXV=>�cos W� . cos � − sin W� . sin �� 

× ��cos W� . sin � − sin W� . cos ��? . 
  Using standard trig identities we end up with 

gX�cos W� � � sin W��. g�cos � + � sin �� = gXV=�cos�W + 1�� + � sin�W + 1��� , 
  which is l�W � 1�, which is what we wanted to show. Hence l�W� ⟹ l�W � 1�, 

and since l�1� is true we have l�d� is true for all d ∈ ℕ. ∎ 
 
For example, if 0 � 1 + � then we can find 0� by first converting to polar form and then using 

the above result. Hence, g � |0| � √2, and � � arg�0� � ¼�dD= 1 = 6/4. Therefore, 

0 � √2�cos 6/4 + � sin 6/4� , 
and 

0� � ,√2 ¥cos 64 + � sin 64¦-� = 2 ¥cos 64 + � sin 64¦� = 2 ¥cos 62 + �. sin 62¦ = 2� . 
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Furthermore, we can now evaluate any power of z with very little extra effort. For example, 

0H � �√2 H�cos 6/4 + � sin 6/4�H = 4�cos�46/4� + � sin�46/4�� = 4�cos 6 + � sin 6� = −4; or 

0=F � �√2 =F�cos 6/4 + � sin 6/4�=F = �√2 =F�cos�106/4� + � sin�106/4�� = ��√2 =F . 
 
The question now is, Does this also work when n is negative? Yes. To prove this we set d � −] 

where m is a positive integer. So we are claiming that if 0 � g�cos � � � sin ��, 

>g�cos � � � sin ��?Dv � gDv�cos�−]�� � � sin�−]��� , 
is true. 

Proof part 2:  The left hand side of the above expression can be written as 

>g�cos � � � sin ��?Dv � gDv. 1�cos � + � sin ��v . 
By the previous proof we have  

>g�cos � � � sin ��?Dv � gDv. 1cos ]� + � sin ]� . 
Multiplying by the conjugate of the denominator we have 

>g�cos � � � sin ��?Dv � gDv. 1cos ]� + � sin ]� . cos ]� − � sin ]�cos ]� − � sin ]� , 
which ultimately simplfies to 

>g�cos � � � sin ��?Dv � gDv. cos ]� − � sin ]�cos� ]� + sin� ]� = gDv�cos�−]�� + � sin�−]��� , 
which is what we wanted to prove. So we now know that  

>g�cos � � �. sin ��?C = gC�cos d� + � sin d�� 

is true for all d ∈ ℤ.  ∎ 

 
For example, if 0 � −2 + �√3 then we can find 0D
 by first converting to polar form and then 

using the above result. Hence g � |0| � √7 and � � arg�0� � tanD=�−√3/2 + 6 ≈ 2.43 

radians. So, 0 � √7�cos 2.43 + � sin 2.43� hence 0D
 � ½√7�cos 2.43 + � sin 2.43�¾D

 which 

simplifies to  

0D
 � �√7 D
�cos 2.43 + � sin 2.43�D
 , 
 � �√7 D
�cos 7.29 − � sin 7.29� , 
 � �√7 D
�cos 1 − � sin 1� . 
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The next question is, Does this also work when n is a fraction? Yes. To prove this we set d � `/a 

where p and q are positive integers. So now we are claiming that if 0 � g�cos � � � sin ��, 

>g�cos � � �. sin ��?¿/À = g¿/À ecos `�a + � sin `�a f , 
is true. 

Proof part 3:  We apply the result of part 1 of the proof to the left hand side of the above 

expression to get  

>g�cos � � �. sin ��?¿/À = g¿/À�cos `� + � sin `��=À . 
Since θ  is a real number we can apply the usual rules of arithmetic to the right hand side of the 

above expression. In other words we raise both sides to the power q: 

y>g�cos � � �. sin ��?¿ÀzÀ = eg¿ÀfÀ y�cos `� + � sin `��=ÀzÀ , 
which simplifies to >g�cos � � �. sin ��?¿ = g¿�cos `� + � sin `�� , 
which is true by part 1 of the proof. Hence we have proved that  

>g�cos � � �. sin ��?C = gC�cos d� + � sin d�� 

is true for all d ∈ ℚ. ∎ 

 
For example, if 0 � −√2 − � then we can find 0=/� by first converting to polar form and then 

using the above result. Hence g � |0| � √3 and � � arg�0� � tanD=�−1/−√2 − 6 ≈ −2.53. 

hence 0 � √3�cos�−2.53� + � sin�−2.53�� and  

0=/� � ½√3�cos�−2.53� + � sin�−2.53��¾=/� = √3Á cos�−1.26� + � sin�−1.26� . 
 
The final question is, Does this also work when n is a real (/irrational) number? In other words 

is it true that >g�cos � � �. sin ��?C = gC�cos d� + � sin d�� when d � √2 or when d � 6? Yes, 

but we will have to wait until part II of these notes when we deal with the exponential form of 

a complex number. 
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Forshadowing the fact that DeMoivre’s theorem works for all real value of n we are now in a 

position to state DeMoivre’s Theorem in full: if 0 � g�cos � � � sin �� then  

 0C � >g�cos � � � sin ��?C � gC�cos d� � � sin d�� (39) 

for all d ∈ ℝ. 

 
Examples  

1) Simplify the following complex numbers, expressing them in principal-argument form: 

 

a) 0 � Â√2 ¥cos 68 + � sin 68¦Ã=�
 b) 0 � ¥cos 69 + � sin 69¦=�  Â2 ¥cos 66 + � sin 66¦ÃR  ; 

c) 0 � Â8 ¥cos 368 � � sin 368 ¦Ã

Â2 ¥cos 616 + � sin 616¦Ã=F   

 
Solutions  

a) Using DeMoivre’s theorem we have 

Â√2 ¥cos 68 + � sin 68¦Ã=� = �√2 =� ecos 1268 + � sin 1268 f =  64 ecos 362 + � sin 362 f . 
 Expressing this in principal-argument form we get 

Â√2 ¥cos 68 + � sin 68¦Ã=� =  64 ¥cos 62 − � sin 62¦ . 
 
b) Using DeMoivre’s theorem we have 

¥cos 69 + � sin 69¦=�  Â2 ¥cos 66 + � sin 66¦ÃR = ecos 1269 + � sin 1269 f  × 2R ecos 566 + � sin 566 f . 
 Expressing this in principal-argument form we get 

¥cos 69 + � sin 69¦=�  Â2 ¥cos 66 + � sin 66¦ÃR =  32 ecos 263 − � sin 263 f ecos 566 + � sin 566 f . 
c) Using DeMoivre’s theorem we have 

z � 
Â8 ¥cos 368 � � sin 368 ¦Ã

Â2 ¥cos 616 + � sin 616¦Ã=F  , 
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So 0 � y8 ecos 368 � � sin 368 fz
 Â2 ¥cos 616 + � sin 616¦ÃD=F , 
 � 

8
2=F ecos 968 + � sin 968 f ecos e−10616 f + � sin e−10616 ff , 
 
 Expressing this in principal-argument form we obtain 

0 � 12 ecos 768 − � sin 768 f ecos e568 f − � sin e568 ff . 
 

2) The expression cos � � � sin � is sometimes written as cis �. As such, simplify 

0 � �cis 5��
�cis ��D
�cis 2��R�cis 3��� . 
 Solution 

 From the numerator we have �cis 5��
�cis ��D
 = �cis 15���cis�−3��� = cis 12�. From the 

denominator we have �cis 2��R�cis 3��� = �cis 10���cis 6�� = cis 16�. Hence  

0 � 
�cis 5��
�cis ��D
�cis 2��R�cis 3��� , 

 � 
cis 12�cis 16� , 

 � �cis 12���cis 16��D= , 
 � �cis 12���cis�−16��� = cis�−4�� . 

 Therefore  0 � cos 4� − � sin 4� . 
 

3) If 0 � −√3 − �, express 0=R in the form � � �;. 

 Solution: Given 0 � −√3 − � we have g � |0| � ��−√3 � + �−1�� = 2, and arg�0� �
tanD= ¥�−1�/�−√3 ¦ − 6 = −56/6. So  

0 � 2 ecos 566 − � sin 566 f . 
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Hence  

0=R � 2=R ecos 566 − � sin 566 f=R , 
 � 2=R ecos 7566 − � sin 7566 f , 
 � 32768 ecos 362 − � sin 362 f , 
 � 32768 ¥cos 62 + � sin 62¦ = 32768� . 

 

4) Let 0 � =� √3 + =� �. Find the least value of n, where d ∈ ℕ, which satisfies 0C � −1. 

 Solution: Given 0 � =� √3 + =� �, g � |0| � 1 and � � Arg�0� � 6/6, from which we can write 

0 � cos 66 + � sin 66 . 
 Hence  0C � ¥cos 66 + � sin 66¦C = cos d66 + � sin d66  . 
 We know that cos 6 � −1 and sin 6 � 0. Therefore, we want 6 � d6/6, implying d � 6. 

Hence  

0S � ¥cos 66 + � sin 66¦S = −1 . 
 

5) Let 0 � − =� √2 + =� √2 �. Find the least value of n, where d ∈ ℚ, which satisfies 0C � �. 

 Solution: Given 0 � − =� √2 + =� √2 �, g � |0| � 1 and arg�0� � −6/4. So � � Arg�0� �
36/4, From which we can write  

0 � cos 364 + � sin 364  . 
 Hence  0C � ecos 364 + � sin 364 fC = cos 3d64 + � sin 3d64  . 
 We know that cos�6/2� = 0 and sin�6/2� = 1. Therefore, we want 6/2 = 3d6/4, implying d � 2/3.  
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Hence  

0�/
 � ecos 364 + � sin 364 f�/
 = � . 
 

6) Is it ever possible to have a complex number such as 0 � cos�6/4� + �. sin�26/3�? Justify 

your answer. 

 Solution: Remember that the argument � represents the angle the complex number makes 

with the positive real axis. There is only one unique angle for any given complex number, 

so the above expression in not a valid representation of a complex number. 

 
7) Simplify �sin � � � cos ��
. 

 Solution: Note that DeMoivre’s theorem applies only to complex numbers of the form cos � � � sin �. The expression above is not is this form. However, we can transform it into 

a complex number as follows: 

�sin � � � cos ��
 � e−�−�f
 �sin � � � cos ��
 , 
 � e− 1� f
 �−� sin � − �� cos ��
 , 
 � − 1�
 �cos � − � sin ��
 , 

 Now we can apply DeMoivre’s theorem. Since −1/�
 = −� we obtain   

�sin � � � cos ��
 � − sin 3� − � cos 3� . 
 

8) Simplify �1 + cos � + � sin ��
. 

 Solution: Again note that DeMoivre’s theorem applies only to cos � � � sin �. To transform 

the above expression into this form rewrite it as 

�1 + cos � + � sin ��
 = �cos 0 + � sin 0 + cos � + � sin ��
 , 
 � �cos 0 + cos � + ��sin 0 + sin �� 
 , 
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 Now use the trig identitity called factor formula to get 

�1 + cos � + � sin ��
 = ,2 cos �2 . cos �2 + � e2 sin �2 . cos �2f-
 , 
 � ,2 cos �2 ecos �2 + � sin �2f-
 , 
 � 8 cos
 �2 ecos �2 + � sin �2f
 , 
 � 8 cos
 �2 ecos 3�2 + � sin 3�2 f . 

 

9) Simplify �1 + cos 2� + � sin 2��/�cos 2� + � sin 2��. 

 Solution:  Again note that DeMoivre’s theorem applies only to cos � � � sin �, so we first 

convert the numerator into such a form. 

1 + cos 2� + � sin 2�cos 2� + � sin 2�  = 
cos 0 + � sin 0 + cos 2� + � sin 2�cos 2� + � sin 2�  , 

 � 
cos 0 + cos 2� + ��sin 0 + sin 2��cos 2� + � sin 2�  , 

 � 
2 cos � cos � + 2� sin � cos �cos 2� + � sin 2�  , 

 � 
2 cos � �cos � + � sin ��cos 2� + � sin 2�  , 

 � 2 cos � �cos � + � sin ���cos 2� + � sin 2��D= , 
 � 2 cos � �cos � + � sin ���cos�−2�� + � sin�−2��� , 
 � 2 cos � �cos � − � sin �� . 

 

Exercise: Simplify �1 − sin � − � cos ��D
. 

ºd~J[g:  0 � 18 cosec
 e64 − �2f ecos e36 + 6�4 f + � sin e36 + 6�4 ff . 
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1.12.3 The periodicity of a complex number 

We now know that 0C � >g�cos � � �. sin ��?C = gC�cos d� + � sin d�� for all real values of n. 

However, in general we also know that cos � and sin � are periodic, so that cos � �cos�� � 2W6� and sin � � sin�� � 2W6�. For example, if 0 � √3 + � then 0 � 2�cos 6/6 +� sin 6/6�. Cubing this value gives  

0
 � 2
�cos 6/6 + � sin 6/6�
 = 8�cos 6/2 + � sin 6/2� = 8� . 
But it is also true that  

0
 � 8�cos�6/2 + 26� + � sin�6/2 + 26�� = 8�cos 56/2 + � sin 56/2� = 8� , 
0
 � 8�cos�6/2 + 46� + � sin�6/2 + 46�� = 8�cos 96/2 + � sin 96/2� = 8� , 

etc. Such an aspect of periodicity will be of fundamental importance when we come to taking 

roots of complex number, i.e. performing √0Ä = 0=/C (see later). 

 
However, one important thing to note is the point at which we consider the periodicity of the 

complex number 0C � gC�cos � � � sin ��C, since there are two ways to look at it: either  

 
i) we first apply Demoivre’s theorem and then take account of the aspect of periodicity, i.e.  0C � gC�cos � � � sin ��C leads to 0C � cos d� � � sin d� by DeMoivre’s theorem, and 

thence 0C � cos�d� � 2W6� + � sin�d� + 2W6�, 

or 

ii) we first take account of the aspect of periodicity, and then we apply DeMoivre’s theorem, 

i.e. 0C � gC�cos � � � sin ��C leads to 0C � �cos�� � 2W6� + � sin�� + 2W6��C, and 

thence 0C � cos d�� � 2W6� + � sin d�� + 2W6�. 

 
These two approaches are different and will not give the same results. We can see why this is 

so by considering the following example: letting cis��� � cos � � � sin � we have seen above 

that if 0 � 2 cis 6/6 then approach i) gives 

0
 � 8�cis�6/6��
 = 8 cis�36/6� = 8 cis�6/2� = 8 cis�6/2 + 2W6� 

leading to 0
 � 8 cis 6/2 or 0
 � 8 cis 56/2 or 0
 � 8 cis 96/2, etc., for W � 0, ±1, ±2, ±3, …  

 
However, approach ii) gives us  

0
 � 8�cis�6/6 + 2W6��
 = 8 cis 3�6/6 + 2W6� = 8 cis�6/2 + 6W6� 

leading to 0
 � 8 cis 6/2 or 8 cis 136/2 or 8 cis 256/2 etc.  
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In comparing both sets of answer 

0
 � �8 cis 6/2 , 8 cis 56/2 , 8 cis 96/2 , 8 cis 136/2 , 8 cis 176/2 , 8 cis 216/2 , 8 cis 256/2 , … � 

and  0
 � �8 cis 6/2 , 8 cis 136/2 , 8 cis 256/2 , 8 cis 376/2 , 8 cis 496/2 … � 

it is clear that using approach ii) causes us to lose some answers which do indeed satify 0
. The 

reason for this is that, in approach ii), we end up multiplying the 2W6 periodicity number by n, 

giving us 0
 values based on 2dW6. This has the effect of skipping over intermediate values of 0
 based on 2W6. 

 
So, if we want to find all possible answers which satisfy 0
 we must adopt approach i), which in 

general is given by 

0C � gC�cos�d� � 2W6� + � sin�d� + 2W6�� . 
Understanding this aspect of when to take account of periodicity will be important when we 

come to proving properties of Arg�0� as well as when taking roots of complex numbers. 

 
1.12.4 Multiplication and division of complex numbers in polar form 

We have seen that we can more easily perform exponentiation on complex numbers such as 0 � �0.3487 − 6.149���
 by first converting them to polar form, and then using DeMoivre’s 

theorem. But what if we had 0 � ½�1 + ���2 − 3���−1 − �√3 ¾/>�−2 + 3���4 − ��?? Here we 

would have to expand, simplify and use the conjugate of the denominator, all of which would 

be quite laborious.  

 
However, there is a way of using the polar form of a complex number to perform multiplication 

and division in a very simple way. This is one of the advantages of converting a complex number 

into polar form as it drastically reduces the effort in the arithmetic of multiplication and 

division. And whereas multiplication and division of ever more factors of complex numbers in 

Cartesian form become more and more laborious, multiplication and division of complex 

numbers in polar form remains simple however many factors we have. 

 
To see this consider 0= � √3 − � and 0� � −2 + 2�. To form their product we could multiply 

these in their current form, and this would be simple enough. But for the purpose of highlighting 

the aspect of arithmetic in polar form let us now convert these to be 0= � 2�cos 6/6 + � sin 6/6 � 

and 0� � √8�cos 36/4 + �. sin 36/4�.  
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Then  

0=0� � Â2 ¥cos 66 + � sin 66 ¦Ã y√8 ecos 364 + �. sin 364 fz ,  

 � �2√8 yecos 66 . cos 364 − sin 66 . sin 364 f + � ecos 66 . sin 364 + sin 66 . cos 364 fz ,  

 � �2√8 ecos e66 + 364 f + � sin e66 + 364 ff , (*) 

 � 2√8 ecos 11612 + � sin 11612 f .  

 
where expression (*) was obtained using the standard sum rules for trig identities. Now, it 

seems logical that, in forming the product 0=0�, we should multiply the separate moduli. But the 

significant and non-intuitive part of step (*) is that multiplication of two complex numbers in 

polar form implies the addition of their separate arguments. Is this just a coincidence? What if 

we were to multiply 0=, 0� and 0
 where 0
 � 1 + �√3.  

 
In polar form this latter complex number is 0
 � 2�cos 6/3 + � sin 6/3�, hence  

0=0�0
 � y2√8 ecos 11612 + � sin 11612 fz Â2 ¥cos 63 + � sin 63¦Ã , 

 

 � �4√8 yecos 11612 . cos 63 − sin 11612 . sin 63f
+ � ecos 11612 . sin 63 + sin 11612 . cos 63fz , 

 � �4√8 ecos e11612 + 63f + � sin e11612 + 63ff , 
 � 2√8 ecos 45636 + � sin 45636 f . 

 
So here we see that the product of three complex numbers is formed by the product of their 

moduli and the sum of their arguments. This should be obvious since we have seen that it works 

for 0=0�, and that 0=0�0
 � �0=0��0
 � 0. 0
 which is just the product of two complex numbers. 
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This therefore seems to suggest that, given two complex numbers 0= � g=�cos �= � � sin �=� and 0� � g��cos �� � � sin ��� we have  

0=0� � g=. g��cos��= + ��� + � sin��= + ���� , 
as illustrated below, where the blue lines are of length g= and g� respectively, and the red line is 

of length g=g�. 

 

Note that the above expression is a generalisation of 0� � g��cos 2� + � sin 2�� since this latter 

can be expressed as 0� � g. g�cos�� + �� + � sin�� + ���. 

 
We can therefore say that  

 |0=0�| � |0=||0�| and 
arg�0=0�� � arg�0=� � arg�0�� . 

to within multiples of 26 
(40) 

 
So, just as for logs and exponentials, the process of “adding when multiplying” applies also to 

complex numbers. 

 
Example 1: If 0= � √3 + � and 0� � −1 + � then |0=| � 2 and |0�| � √2. Also, arg�0=� �tanD=�1/√3 = 6/6 and arg�0�� � tanD=�−1� = 36/4. Therefore 

|0=0�| � 2√2 and arg�0=� � arg�0�� � 6/6 + 36/4 = 116/12. 
 
Example 2: If 0= � � and 0� � −1 − � then |0=| � 1 and |0�| � √2. Also, arg�0=� � tanD=�1/0� =6/2 and arg�0�� � tanD=�−1/−1� + 6 = 56/4 (remember this is “arg” not “Arg” so we are not 

taking the principal argument here). Hence  

|0=0�| � √2 and arg�0=� � arg�0�� � 6/2 + 56/4 = 76/4. 
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Example 3: If 0= � −1 + � and 0� � −1 − � then |0=| � √2 and |0�| � √2. Also, arg�0=� �tanD=�1/−1� + 6 = 36/4 and arg�0�� � tanD=�−1/−1� + 6 = 56/4 (remember this is “arg” 

not “Arg” so we are not taking the principal argument here). Therefore  

|0=0�| � 2 and arg�0=� � arg�0�� � 36/4 + 56/4 = 26. 
 
Example 4: If 0= � −1 and 0� � −� then |0=| � 1 and |0�| � 1. Also, arg�0=� � tanD=�0/−1� +6 = 6 and arg�0�� � tanD=�−1/0� + 6 = 36/2 (remember this is “arg” not “Arg” so we are not 

taking the principal argument here). Therefore  

|0=0�| � and arg�0=� � arg�0�� � 6 � 36/2 = 56/2 = 6/2 + 26. 
 

Note that property (40) is not generally true for Arg�0�. For example, if 0= � −1 and 0� � 5�, 

then 0=0� � −5�. hence Arg�0=� � tanD=�0/�−1� + 6 = 6, and Arg�0�� � tanD=�5/0� = 6/2, 

hence 

Arg�0=� � Arg�0�� � 6 � 6/2 = 36/2, and Arg�0=0�� � tanD=�−5/0� = −6/2, 

so here Arg�0=0�� ≠ Arg�0=� � Arg�0��. 
 
These should make sense since Arg�0� is restricted to �−6, 6?, hence adding or subracting any 

two angles, each in this interval, may easily result in an angle outside this interval. However, 

since there is no restriction on the size of the angle for arg�0� then the properties above hold. 

 
What of divison? Let us again consider 0= and 0� as above, but this time perform 0=/0�. Then  

0=/0� � 
2 ¥cos 66 + � sin 66 ¦

√8 ¥cos 364 + �. sin 364 ¦ , 

 � 
2√8 Å¥cos 66 + � sin 66 ¦ ecos 364 + �. sin 364 fD=Æ , 

 � 
2√8 ¥cos 66 + � sin 66 ¦ ecos 364 − �. sin 364 f , 

 � 
2√8 yecos 66 . cos 364 + sin 66 . sin 364 f + � esin 66 . cos 364 − cos 66 . sin 364 fz , 
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 � 
2√8 ecos e66 − 364 f + � sin e66 − 364 ff , 

 � 2√8 ecos 7612 − � sin 7612f . 
 
Again, it seems logical that, in forming the division 0=/0�, we should divide the separate moduli. 

But the significant part is that division of two complex numbers in polar form implies the 

subtraction of their separate arguments. And again this is not a coincidence, but is a general 

property of the division of complex numbers in polar form. 

 
Therefore given two complex numbers 0= � g=�cos �= � � sin �=� and 0� � g��cos �� � � sin ��� 

we have  0=0� � g=g� �cos��= − ��� � � sin��= − ���� , 
which is illustrated below, and where the blue lines are of length g= and g� respectively, and the 

red line is of length g=/g�. 

 

We can therefore say that  

 Ç0=0�Ç � |0=||0�| and arg e0=0�f � arg�0=� − arg�0�� . (41) 

 
What all of this means is that we can perform the arithmetic of multiplication or division of any 

number of factors of complex numbers in polar form with very little effort compared to 

performing this arithmetic in Cartesian form.  
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Example 5: If 0= � √3 + � and 0� � −1 + � then |0=| � 2 and |0�| � √2. Also, arg�0=� �tanD=�1/√3 = 6/6 and arg�0�� � tanD=�−1� = 36/4. Therefore 

|0=/0�| � 2/√2 and arg�0=� − arg�0�� � 6/6 − 36/4 = −76/12. 
 
Example 6: If 0= � � and 0� � −1 − � then |0=| � 1 and |0�| � √2. Also, arg�0=� � tanD=�1/0� =6/2 and arg�0�� � tanD=�−1/−1� + 6 = 56/4 (remember this is “arg” not “Arg” so we are not 

taking the principal argument here). Hence  

|0=/0�| � 1/√2 and arg�0=� − arg�0�� � 6/2 − 56/4 = −36/4. 
 
Example 7: If 0= � −1 + � and 0� � −1 − � then |0=| � √2 and |0�| � √2. Also, arg�0=� �tanD=�1/−1� + 6 = 36/4 and arg�0�� � tanD=�−1/−1� + 6 = 56/4 (remember this is “arg” 

not “Arg” so we are not taking the principal argument here). Therefore  

|0=/0�| � 1 and arg�0=� − arg�0�� � 36/456/4 = −6/2. 
 
Note that property (41) is not generally true for Arg�0�. For example, if 0= � −1 and 0� � 5�, 

then 0=/0� � �/5. So Arg�0=� � tanD=�0/�−1� + 6 = 6, and Arg�0�� � tanD=�5/0� = 6/2, 

hence 

Arg�0=� − Arg�0�� � 6 − 6/2 = 6/2, and Arg�0=/0�� � tanD=�0.2/0� = 6/2, 

so here Arg�0=/0�� ≠ Arg�0=� − Arg�0��. 
 

The diagrams on the next page illustrate the multiplication/addition property of the arguments 

of two complex numbers. The blue arc represents arg�0=�, the red arc represents arg�0�� and 

the pink arc represents both arg�0=0�� and arg�0=� � arg�0��. 

 
Example 8: As another example suppose we are given that 0= � 2�cos�6/8� + �. sin�6/3�� and 0� � 4�cos�36/8� + �. sin�36/3��, and we want to find 0=0�. We then proceed as follows: 

0=0� � >2�cos�6/8� + �. sin�6/3��?>4�cos�36/8� + �. sin�36/3��? , 
 � 8 ecos e68 � 368 f � � sin e68 � 368 f f , 
 � 8 ¥cos 62 + � sin 62 ¦ , 

 � 8� . 



137 

 

 

z
2
z
1
 = i

z
2
 = i

Im

Re
z
1
 = 1

Arg(z
1
) Arg(z

1
z
2
)

Arg(z
1
) + Arg(z

2
)

Arg(z
2
)

 

The multiplication of −1 and i (non-principal argument version, and principal argument version) 

 

 

z
1
 = i

z
2
 = i

Im

Re
z
1
z
2
 = 1

Arg(z
1
)

Arg(z
2
)

Arg(z
1
) + Arg(z

2
)

Arg(z
1
z
2
)

 

The multiplication of −i and i (non-principal argument version and principal argument version) 

 

 

z
2
z
1
 = i

z
2
 = i

Im

Re
z
1
 = 1

Arg(z
1
) Arg(z

1
z
2
)

Arg(z
1
) + Arg(z

2
)

Arg(z
2
)

 
The multiplication of −1 and −i (non-principal argument version and (principal argument version) 



138 

 

Example 9: Division presents no more difficulty. For example, suppose we want to simplify 

a) 0 � cos 2� + � sin 2�cos � + � sin �  b) 0 � 1cos�−�� + � sin�−�� 

In this case we can do as follows :  

 

a) 0 � 
cos 2� + � sin 2�cos � + � sin �  , 

 
  � �cos 2� + � sin 2���cos � + � sin ��D= , 

 
  � �cos 2� + � sin 2���cos�−�� + � sin�−��� , 

 
  � cos � � � sin � . 

 

and      
 

b) 0 � 
1cos�−�� + � sin�−�� , 

 
  � �cos�−�� � � sin�−���D= , 

 
  � cos � � � sin � . 

 

Example 10: Products of complex numbers involving ever high powers also present no real 

difficulty. In wanting to evaluate �cos�6/9� + � sin�6/9��=� × >2�cos�6/6� + � sin�6/6��?R we 

have 

 �cos�6/9� + � sin�6/9��=� × >2�cos�6/6� + � sin�6/6��?R 

� 32�cos�126/9� + � sin�126/9�� �cos�56/6� + � sin�56/6�� , 
� 32 ecos e1269 + 566 f + � sin e1269 + 566 ff , 
� 32 ecos e1366 f + � sin e1366 ff , 
� 32 ¥cos ¥66¦ + � sin ¥66¦¦ . 
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In wanting to evaluate >8�cos�36/8� � � sin�36/8��?
 ÷ >2�cos�6/16� + � sin�6/16��?=F we 

have 

>8�cos�36/8� � � sin�36/8��?
 ÷ >2�cos�6/16� + � sin�6/16��?=F 

� 
8
2=F ecos e968 f + � sin e968 ff ecos e10616 f + � sin e10616 ff , 

� 
12 ecos e968 + 10616 f + � sin e968 + 10616 ff , 

� 
12 ecos e764 f + � sin e764 ff , 

� 
12 ¥cos ¥64¦ − � sin ¥64¦¦ . 

 

Example 11: Let 0 � � � �;. To show that arg�0. 0∗� = 0 we do the following:  

arg�0. 0∗� = arg��� + �;��� − �;� = arg��� + ;��. 
Note that �� � ;� is a positive real number. Since all positive real numbers lie on the Re axis, 

their angle w.r.t. to this axis is 0 rads. Hence arg�0. 0∗� = 0.  

 
The algebraic way of seeing this is to note that we are looking for arg���� � ;�� � 0. � . 

Therefore  

� � tanD= e 0�� + ;�f = 0 . 
 

Exercise: Show that arg�0 � 0∗� � 0. 

 

Example 12: In order to evaluate �1 + �√3 U + �1 − �√3 U
 we use DeMoivre’s theorem as 

follows: Let 0= � �1 + �√3 U
. Then g � |0=| � �1� + �√3 � = 2, and � � arg�0� � tanD= √3 =

6/3. Hence  

0= � 2 ¥cos 63 + � sin 63¦ . 
Similarly we can show that  

0� � 2 ¥cos 63 − � sin 63¦ . 
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Hence  

0=U � 0�U � Â2 ¥cos 63 + � sin 63¦ÃU + Â2 ¥cos 63 − � sin 63¦ÃU , 
 � 2U ecos 863 + � sin 863 f + 2U ecos 863 − � sin 863 f , 
 � 2U e2 cos 863 f , 
 � −256. 

 
Exercise: Show that �1 + ��C + �1 − ��C = 2√2C. cos�d6/4�, where d ∈ ℕ. Deduce a similar 

result for �1 + ��C − �1 − ��C. 

 
Exercise: Let 0 � �� � ���C�� − ���C, where d ∈ ℕ. Show that z is always real, and that  �� − ���C is the conjugate of �� � ���C. 

 

Example 13: Suppose, more generally, that we want to find the value of � such that  

cos�g�� � � sin�g�� � cos�~�� � � sin�~�� , 
where r and s are integers and whereg ≠ ~. We can do this by firstly dividing the LHS by the 

RHS, and then applying DeMoivre’s theorem appropriately. So  

 
cos�g�� � � sin�g��cos�~�� � � sin�~�� � 1 

⟹ �cos�g�� � � sin�g����cos�~�� � � sin�~���D= � 1 

⟹ �cos�g�� � � sin�g����cos�−~�� � � sin�−~��� � 1 

which by demoivre’s theorem gives us 

cos�g − ~�� � � sin�g − ~�� � 1 . 
Equating Re and Im parts we have cos�g − ~�� � 1 and sin�g − ~�� � 0. Both of these solve to 

give the same answer of �g − ~�� � 2d6, for d � 0, ±1, ±2, … Hence  

� � 2d6g − ~ , 
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for d � 0, ±1, ±2, … In other words, we can find the general solution to cos � � � sin � �cos 2� + � sin 2�, cos 7� � � sin 7� � cos 3� − � sin 3�, or any other combination, by the use of 

the simple expression for � above. 

 
Other examples: 

1) Evaluate  

��cos�6/6� − � sin�6/6��==
�cos�6/6� + � sin�6/6 �  . 

 Solution:  

��cos�6/6� − � sin�6/6��==
�cos�6/6� + � sin�6/6 � = �cos�6/6� − � sin�6/6��==/��cos�6/6� + � sin�6/6 ��=/�  . 

 Division of complex numbers implies subtraction of their arguments. However the 

numerator is not in the standard form cos � � � sin �, so we first have to convert the 

numerator into this form: 

��cos�6/6� − � sin�6/6��==
�cos�6/6� + � sin�6/6 � = �cos�−6/6� + � sin�−6/6��==/��cos�6/6� + � sin�6/6 ��=/�  . 

 We can now apply DeMoivre’s theorem and then perform the division by subtracting the 

arguments appropriately: 

��cos�6/6� − � sin�6/6��==cos�6/6� + � sin�6/6 �  � 
cos�−116/12� + � sin�−116/12�cos�6/12� + � sin�6/12 �  , 

 � cos e− 11612 − 612f + � sin e− 11612 − 612f , 
 � cos�−6� � � sin�−6� , 
 � −1. 

 

2) Let cos � � �. sin � ≡ cis �. Find �cis º��cis É��cis Ê� when º � É � Ê � 6. If 6 B º � É �Ê ≤ 26, express your answer in principal-argument form. 

 Solution:  �cis º��cis É��cis Ê� � �cis�º � É���cis Ê� � �cis�º � É � Ê�� � cis 6 � −1. 

 If 6 B º � É � Ê ≤ 26 then º � É � Ê is greater than the maximum allowed postive angle 

of 6. Therefore we need to subtract 26 from the argument in order to bring this back into 

the interval �−6, 6?. Hence the principal-argument form is 

�cis º��cis É��cis Ê� � cis��º � É � Ê� − 26  . 
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3) If L � cos � � � sin � and M � cos » � � sin », where � ≠ », find �L/M� ± �M/L�.  

 Solution:   

 Since L/M � �cos � � � sin ��/�cos » � � sin »� � �cos � � � sin ���cos » � � sin »�D= and M/L � �cos » � � sin »�/�cos � � � sin �� � �cos » � � sin »��cos � � � sin ��D= we have 

LM � ML � �cos � � � sin ���cos�−»� � � sin�−»�� 

��cos » � � sin »��cos�−�� � � sin�−��� 

 � �cos�� − »� � � sin�� − »�� � �cos�» − �� � � sin�» − ��� , 
 � cos�� − »� � cos�» − �� � ��sin�� − »� � sin�» − ��� . 

 This last expression can be simplified using the factor formula of the trig family of identities 

to give us LM � ML � 2 cos�� − »� . 
 By the same process it can be shown that  LM − ML � 2� sin�� − »� . 
 
4) Let 0 � cos � � � sin �. Simplifying 0 � 1/0 we get 

0 � 10 � cos � � � sin � � 1cos � + � sin � , 
 � cos � � � sin � � �cos � � � sin ��D= , 
 � cos � � � sin � � cos � − � sin � , 
 � 2 cos � . 

 By the same process it can be shown that 0 − 1/0 = 2� sin �. 

 
Note that the simplicity in arithmetic applies only to performing multiplication and division, 

not to addition and subtraction. For example, given three complex numbers 0= � −1 − �, 0� �2 − � and 0
 � −√3 − � it is far easier to add and subtract these in the current form rather than 

adding /subtracting them in the form 0= � cos 36/4 + � sin 36/4, 0� � √5�cos 0.464 −� sin 0.464� and 0
 � 2�cos 56/6 − � sin 56/6�. 
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5) To show that  21 + 0 = 1 − � tan �2 , 
 we first look to convert the denominator into the form cos � � � sin �. Hence  

1 + 0 � 1 + cos � + � sin � , 
 � cos 0 + � sin 0 + cos � + � sin � , 
 � cos 0 + cos � + ��sin 0 + sin �� , 
 � 2 cos� e�2f + 2� sin �2 . cos �2 , 

where this last equation was derived using the factor formula of trig identities. So we have  

21 + 0 � 
22 cos� ¥�2¦ + 2� sin �2 . cos �2  

 � 
1cos� ¥�2¦ + � sin �2 . cos �2 

 � 
1cos� ¥�2¦ + � sin �2 . cos �2 × cos� ¥�2¦ − � sin �2 . cos �2cos� ¥�2¦ − � sin �2 . cos �2 

 � 
cos� ¥�2¦ − � sin �2 . cos �2cosH ¥�2¦ + sin� �2 . cos� �2  . 

 
Dividing top and bottom of the RHS by cos���/2� gives 2/�1 + 0� = 1 − � tan��/2�. 

 
Exercise: If  0 � 1 − cos � + � sin �1 + cos � − � sin � , 
Show that Z[�0� � 0 and \]�0� � tan��/2�. 
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6) Suppose we want to solve for x in ��C − 2�C cos d² + 1 = 0. This looks like a quadratic in �C so an obvious thing to do is to use the quadratic formula: 

�C � 2 cos d² ± √4 cos� d² − 42  , 
 � cos d² ± �cos� d² − 1 , 
 � cos d² ± �sin� d² . 

 
Now notice that −1 ≤ sin d² ≤ 1 hence the maximum value that sin� d² can reach is +1. 

Therefore, in general, the determinant Δ will be negative, with Δ � 0 on specific occasions.  

 
Hence we can write the above as 

�C � cos d² ± � sin d² , 
 � cos�±d²� � � sin�±d²� . 

 
Hence  �C � �cos�±d²� � � sin�±d²��=/C . 

 � �cos�2W6 ± d²� + � sin�2W6 ± d²��=/C , 
 � cos e2W6d ± ²f + � sin e2W6d ± ²f . 

 
7) Find all complex numbers 0 such that |0| � 1 and  

Ç00̅ � 0̅0Ç � 1 . 
 Solution: 

 Let 0 � cos � � � sin �. Then  

1 = Ç00̅ + 0̅0Ç = |0� + 0̅�||0|� = |cos 2� + � sin 2� + cos � − � sin 2�| = 2|cos 2�| . 
 Therefore  

cos 2� = 12 or cos 2� = − 12 

 
 For 

• cos 2� = =� we have �= � −56/6, �� � −6/6, �
 � 6/6, �H � 56/6 
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• cos 2� = − =� we have �R � −26/3, �S � −6/3, �T � 6/3, �U � 26/3 

 
 Hence there are eight complex numbers z  such that |0| � 1: 0X � cos �X � � sin �X  where �X  are the arguments listed above for W � 1 to 8. 

 

8) Let two complex numbers 0=, 0� be such that |0=| � |0�| � 1. If arg�0=/0�� � 6/2, find  

Ç0= � 0�0= − 0�Ç . 
 Solution: 

 Let 0 � cos � � � sin �. Then  

Ç0= � 0�0= − 0�Ç � Ë�cos �= � � sin �=� � �cos �� � � sin ����cos �= � � sin �=� � �cos �� − � sin ���Ë , 
 � Ë�cos �= � cos ��� � ��sin �= � sin ����cos �= � cos ��� � ��sin �= − sin ���Ë , 
 � 

cos� �= � sin� �= � 2�cos �= cos �� + sin �= sin ��� + cos� �� + sin� ��cos� �= + sin� �= + 2�cos �= cos �� − sin �= sin ��� + cos� �� + sin� �� , 
 � 

2 + 2 cos��= − ���2 + 2 cos��= + ��� . 
 
Since arg�0=/0�� � arg�0=� − arg�0�� � �= − �� � 6/2, and therefore �� � �= − 6/2, this last 

equation simplifies to  

Ç0= � 0�0= − 0�Ç � 22 + 2 cos�2�= − 6/2� = 11 + sin�2�=� . 
We would have got the same result if we had substitute for �= � �� � 6/2, but this time with 

the denominator having term sin�2���. 

 

1.12.5 The geometric effect of multiplication and division of complex numbers in polar form 

We saw in sections (1.7.2) and (1.8.2) the geometric effect of multiplication and division on a 

complex numbers. This involved a number of transformations, including considering a triangle 

formed for one complex number, rotating the triangle so that its base met the hypoteneuse of 

the triangle formed for the other complex number, and scaling the base of the former triangle 

appropriately. All of this seems quite involved.  
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Having learnt about DeMoivre’s theorem we are now in a position to be able to more easily see 

and understand the geometric effect of multiplication and division of complex numbers. So, 

given two complex numbers 0= � g=�cos �= � � sin �=� and 0� � g��cos �� � � sin ��� we have  

0=0� � g=g��cos �= � � sin �=��cos �� � � sin ��� � g=g��cos��= � ��� � � sin��= � ���� , 
and 0=0� � g=g� �cos �= � � sin �=� ÷ �cos �� � � sin ��� � g=g� �cos��= − ��� � � sin��= − ���� . 
From these expressions we can see directly the scaling and rotation effect of multiplication and 

division, namely that the scaling of one complex number by the other is automatically shown 

as g=g� or g=/g�, and the rotation of one complex number (already at a given angle) by the other 

is automatically shown as �= � �� or as �= − ��. This situation is illustrated below. 

 

 

 The geometric effect of multiplication The geometric effect of division 

 
 
 
 


